魏綺蕓
摘 要:高中數學知識被切割成各個版塊,高三一輪復習中重視一題多解,能使學生從多角度觀察問題,了解不同數學知識之間的區別和聯系。講解一題多解時,教師要以通法為主,要強調最基礎的方法與思想,要注意通法為先,先“放”后“收”。提倡一題多解,能夠促使教師學生不斷學習,提高對不同數學知識的掌握能力,提高數學素養。
關鍵詞:一題多解;高考數學;思維能力
根據高考數學“源于課本,高于課本”的命題原則,教師在高三一輪復習過程中可以利用書本上的例題習題,進行對比、聯想,采取一題多解形式進行教學。這是提高學生數學學習興趣和思維能力的有效途徑。筆者結合高三一輪復習課中一道“向量的模”的案例分析談談自己的教學思考。
一、案例分析
例:已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC。若點P的坐標為(2,0),則|++|的最大值為( )
A.6 B.7 C.8 D.9
點評:求解幾個向量和的模的最值,既需會“轉化”,又需會選“方法”,即先利用向量的和、差、模等公式,對所給向量的模進行轉化,再利用基本不等式法、配方法、單調性法、數形結合法等,求幾個向量和的模的最值。
二、高三一輪復習中一題多解的重要性思考
1.幫助學生理解數學概念
很多時候,學生解數學題所用的方法是根據他們當時所學習的內容來決定的。不同的做法涉及的知識點也是不同的,想要做到一題多解,就要求學生能夠聯系相關的概念,在使用這些數學概念的同時加深對它們的理解。
2.培養學生的發散思維
一題多解,可以幫助學生提高發散思維能力。學生在平時的學習中就已經接觸到不同的做法,在想出一種做法之后,不會停止思考,而會進一步思考利用其他知識能不能也一樣解決問題,在潛移默化中養成了從多個方面去想問題的習慣。學生的思維不會停留在原地,或者只朝著某一個固定的方向前進,而是多角度、全方位地進行思考,將思維發散到四面八方、各個角落。
3.形成良好的認知結構
高中數學知識被切割成各個版塊,例如集合、函數、立體幾何、解析幾何等,導致中學生對數學的認知較為單一。一題多解,學生能從多角度觀察問題,了解不同數學知識之間的區別和聯系。它在不同的版塊之間建立了橋梁,幫助學生形成良好的認知結構。同時,一道題學生用了不同的解法,知道各種解法的優缺點,在考試比較緊迫的時間內就可以選擇自己最熟悉、最簡潔的做法。
4.提高教師的數學素養
著名教育學家陶行知曾經說過:“要給學生一杯水,自己首先要有一桶水。”如果教師自己都不能盡可能多地想出多種解法,那么在這種情況下,要求學生做到一題多解只能是空談。如果學生給出了一種解法,而教師不能迅速判斷對不對、哪里存在問題,久而久之就會損害學生思考不同解法的積極性。提倡一題多解,能夠促使教師不斷學習數學,提高對不同數學知識的掌握能力,提高數學素養。
5.一題多解要緊抓考綱,因人施教,要注意通法為先,先“放”后“收”
筆者認為講授一題多解時,要以通法為主,要強調最基礎的方法與思想。如果講題時均攤時間沒重點,學生很容易犯迷糊,越聽越茫然,越做越沒信心,最終對學習失去興趣。因此,一題多解要注意通法為先,先“放”后“收”,“放”是指在充分考慮學生現狀,立足通法,突出重點的情況下,放手讓學生自主鉆研解題方法。“收”是指當多種解法都擺在眼前的時候,教師要及時梳理每種解法的隱形思維過程,歸納總結知識點,幫助學生順利掌握知識要領。
參考文獻:
[1]孫明科.金版新學案[M].北京:團結出版社,2009-03.
[2]李盤喜.解題題典.高中數學[M].長春:東北師范大學出版社,2015-02.
編輯 段麗君