999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于高考的高中數學總結性教學

2019-10-18 07:08:02張桂敏
數學學習與研究 2019年17期

張桂敏

【摘要】總結性教學是高中階段教學中常用的一種方法.基于此,本文主要針對高中數學總結性教學現狀進行分析,并以抽象函數為例,細化闡述基于高考的高中數學總結性教學,以期為高中數學抽象函數教學提供良好的參照,并促進學生抽象函數類問題解答能力的提高.

【關鍵詞】高考;總結性教學;抽象函數

抽象函數無疑是高中數學的重點所在.在學習過程中,多數學生均表示自己曾在解答抽象函數類問題時遇到困難.而抽象函數作為高考數學的主要考點,當學生在高考時面對抽象函數難以正確解答時,很容易出現緊張、慌亂等負性情緒,上述情緒的產生可干擾其解答思路,進而影響其解答正確率及解答用時.因此,在高中數學的總結性教學中,應將抽象函數作為一項重點內容來對待.

一、高中數學總結性教學現狀

總結性教學是學期末、高三階段的常用教學方法.總結性教學多以一類知識或題目為對象,幫助學生充分掌握這一類知識或題目的解答方法[1].近年來,隨著人們對高中階段教育重視程度的提高,總結性教學在高中數學課程中的應用也受到了人們的廣泛關注.從高中數學總結性教學的內容來看,抽象函數無疑是其中的主要內容.

二、基于高考的高中數學總結性教學——以抽象函數為例

這里以抽象函數為例,對基于高考的高中數學總結性教學進行分析和研究.

例1 已知函數f(x)是定義在(0,+∞)上的增函數,且滿足正實數:x,y,皆有f(xy)=f(x)+f(y),且f(2)=1.求:

(1)求f(8)的值.

(2)求解不等式f(x)>f(x-2)+3.

在這道抽象函數問題中,求解的關鍵在于:能否充分利用題目中的已知信息獲取解答問題的必要條件(函數的單調性).具體解題思路如下:

在第一個問題中,可結合已知條件:f(2)=1及該抽象函數的性質:增函數,判斷出f(4)的值為2,而f(8)的值為3.

而在第二個問題中,需直接利用不等式中的已知信息及上一問題的答案,將不等式f(x)>f(x-2)+3轉化為:f(x)>f[8(x-2)].在這一不等式基礎上,進一步推論出:f(x)>f[8(x-2)].引入題目中的已知信息:抽象函數f(x)為定義在(0,+∞)范圍上的增函數,可得:x>8(x-2),即x<167.再次運用題目中的已知條件,x的取值范圍包含x>0以及x-2>0兩種,可判斷出x>2.因此,問題(2)中不等式的解集應為:2,176.

當學生能夠掌握這道問題的解題方法時,可仍將函數的單調性作為考點,選擇其他內容的抽象函數試題,以促進學生解答類似抽象函數問題能力的提升.在針對抽象函數開展總結性教學過程中,所選抽象函數的排列方式應盡量按照從簡單到困難的模式,循序漸進地提高學生解答抽象函數問題的能力[2].

例2 已知函數f(x)為定義在Q上的奇函數,g(x)=f(x-2)也為奇函數,且f(1)的值為5,求f(2019)的值.

解析 解答這一抽象函數題目的關鍵為:從題目已知信息中收集有用資料,并將其轉換為解答題目所必備的信息.具體解題過程為:

根據已知信息:g(x)=f(x-2)為奇函數,則可得出:g(-x)=-g(x),進而推斷出:f(-x-2)=-f(x-2).再次引入已知信息:f(x)為定義在Q上的奇函數,可推斷出,f(-x-2)=-f(x+2).將其帶入由抽象函數g(x)得到的函數中,可得:f(x-2)=f(x+2).根據上述關系可判斷函數f(x)的周期T為4.利用周期值對所求f(2019)進行轉化,可得:f(2019)=f(3+504×4)=f(3).為了求得f(3)的值,可利用題目中剩余的已知信息:f(1)=5,將其轉化為f(3)=f(3-4)=f(-1)=-f(1)=5.因此,f(1)和f(2019)的值均為-5.

例3 已知函數f(x)為定義在M上的奇函數,已知f(1)的值為2,且有:f(x+6)=f(x+1),求解:f(4)+f(10)的值.

根據題目中的已知信息:f(x)為定義在M上的奇函數,確定該函數必符合規律:f(0)=0.已知信息:f(x+6)=f(x+1),設t=x+1,將其代入上述已知信息中,可得f(t+5)=f(t).因此,可判斷出,函數f(x)的周期為5.利用函數周期對所求值進行轉化,f(4)可轉化為f(4-5)即f(-1),f(-1)與-f(1)相等,因此,可得f(4)的值為-2.而f(10)則可轉化為f(10-5×2),即f(0)=0.因此,本題目所求f(4)與f(10)之和為-2.

為了提高學生對抽象函數問題的解答能力,可參照上述題目的基本形式,以函數的周期性為基本內容,通過給出函數已知值、范圍等相關已知條件的形式,引導學生自主完成已知條件的合理利用及求解問題的計算.通過同類型抽象函數問題的總結性講解,學生對這類問題的了解將逐漸深入,長此以往,其可形成良好的抽象函數問題解答能力.此外,在高中數學的總結性教學過程中,教師需注意引導學生理解不同抽象函數的特征,學會總結解題方法與已知信息之間的關聯,促使學生能夠充分利用已知信息,以期獲得更有價值的信息,進而完成抽象函數類題目的解答.

三、結 論

綜上所述,抽象函數求解對學生的解題能力、抽象思維等提出了較高的要求.由于抽象函數是高考數學試卷中必不可少的一種類型題,因此,運用總結性教學法提高學生的抽象函數解題能力具有一定的必要性.在總結性教學過程中,教師可引入同一類題目,引導學生進行細化求解,逐步豐富學生對不同類型抽象函數解答思路的理解.

【參考文獻】

[1]吳紅娟.對當前高中數學課堂教學的總結與反思[J].新課程學習(下),2014(11):137-139.

[2]張慧玲.基于高考的高中數學總結性教學——以抽象函數為例[J].數學學習與研究,2013(21):105-107.

主站蜘蛛池模板: 久久久久国色AV免费观看性色| 国产麻豆永久视频| 2020国产精品视频| 亚洲成人动漫在线| 国产噜噜噜| 久久久久国产一级毛片高清板| 91亚瑟视频| 97国产在线观看| 一级毛片在线播放| 亚洲无码精品在线播放| 亚洲精品第一在线观看视频| 国产凹凸一区在线观看视频| 亚洲男人的天堂在线| 伊人成人在线视频| 扒开粉嫩的小缝隙喷白浆视频| 免费AV在线播放观看18禁强制| 永久免费av网站可以直接看的 | 久久久久亚洲精品成人网| 国产av一码二码三码无码| 91精品国产无线乱码在线 | 久久综合色播五月男人的天堂| 国产欧美成人不卡视频| 国产屁屁影院| 91九色最新地址| 国产美女一级毛片| 91最新精品视频发布页| 四虎国产永久在线观看| 国产成人亚洲欧美激情| 久久免费视频播放| 亚洲成年人网| 亚洲欧美日韩天堂| 四虎永久在线视频| 九九视频免费在线观看| 日本成人在线不卡视频| 91免费国产在线观看尤物| 亚洲午夜福利精品无码| 亚洲水蜜桃久久综合网站| 婷婷色婷婷| 国产成人综合亚洲欧美在| 中日韩一区二区三区中文免费视频 | 伊人激情久久综合中文字幕| 色天天综合久久久久综合片| 亚洲精品国产精品乱码不卞 | 精品伊人久久久久7777人| 国产一区二区人大臿蕉香蕉| 园内精品自拍视频在线播放| 久久精品一卡日本电影| 亚洲无码熟妇人妻AV在线| 波多野结衣一二三| 亚洲国产亚洲综合在线尤物| 99久久国产综合精品2020| 国产嫖妓91东北老熟女久久一| 天天色天天综合网| 91区国产福利在线观看午夜| 亚洲AV色香蕉一区二区| 无码人妻热线精品视频| 久久福利网| 久久中文电影| 亚洲av色吊丝无码| 久久福利网| 国产91丝袜在线播放动漫 | 欧美另类第一页| 午夜国产小视频| 欧美a级完整在线观看| 99久久精品免费看国产电影| 福利姬国产精品一区在线| 一区二区日韩国产精久久| 白浆视频在线观看| 欧美一区二区三区国产精品| 国产午夜精品一区二区三区软件| 青青操国产| 中文字幕日韩丝袜一区| 欧美日韩精品一区二区在线线 | 久久青草视频| 亚洲成人黄色在线观看| 色偷偷综合网| 97se亚洲综合在线| 国产丰满大乳无码免费播放 | 亚洲资源在线视频| 激情在线网| 九色综合伊人久久富二代| 免费视频在线2021入口|