張冠琳 高存斌 劉玉真


摘要:隨著納米科技的發(fā)展,人工碳納米材料(Engineered carbon nanomaterials,ECNMs)在諸多領(lǐng)域得到廣泛應(yīng)用。與此同時(shí),ECNMs不可避免地釋放進(jìn)入環(huán)境,增加與生物接觸的機(jī)會(huì),其生物毒性效應(yīng)及潛在的環(huán)境風(fēng)險(xiǎn)不容忽視。植物是人類重要的食物來源,目前已有研究表明ECNMs對(duì)植物有毒害作用,對(duì)食品安全及人類健康造成威脅。鑒于此,在簡要介紹ECNMs環(huán)境來源的基礎(chǔ)上,綜述了目前國內(nèi)外關(guān)于ECNMs對(duì)植物生理生長的影響及作用機(jī)制的研究進(jìn)展,并對(duì)當(dāng)前研究方法和面臨的挑戰(zhàn)進(jìn)行探討,為ECNMs的生物安全性評(píng)估、植物保護(hù)、原材料的合理規(guī)劃使用提供一定的理論依據(jù)與實(shí)踐參考。
關(guān)鍵詞:碳納米材料;植物毒性;作用機(jī)制;生物安全
中圖分類號(hào):X171.5? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):0439-8114(2020)02-0014-06
DOI:10.14088/j.cnki.issn0439-8114.2020.02.003? ? ? ? ? ?開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Research advances on plant effects of engineered carbon nanomaterials
ZHANG Guan-lin,GAO Cun-bin,LIU Yu-zhen
(College of Geography and Environment,Shandong Normal University,Jinan 116023,China)
Abstract: With the development of nanotechnology, engineered carbon nanomaterials are widely used in many fields. Meanwhile, ECNMs inevitably release into the environment, which will enhance the chances of contact with organisms. Biological toxicity and potential environmental risks can not be ignored. Plants are an important source of human food. At present, the researches have shown that ECNMs have toxic effects on plants and threaten food safety and human health. Based on the brief introduction of the environmental sources of ECNMs, the research progress of the effect and mechanism of ECNMs on the physiological growth of plants at home and abroad was? summarized, the current research methods and challenges were discussed, so as to provide theoretical basis and practical reference for the biosafety assessment, plant protection and rational planning and using of raw materials of ECNMs.
Key words: carbon nanomaterials; plant toxicity; mechanism of action; biological safety
人工碳納米材料(Engineered carbon nanomaterials,ECNMs)是指在三維空間中至少有一維處于1~100 nm范圍內(nèi)的碳基納米材料[1],主要包括碳納米管(Carbon nanotubes,CNTs)、石墨烯、富勒烯(Fullerene)及其各自的衍生物。由于其優(yōu)異的性能,ECNMs在抗菌材料、生物醫(yī)藥、能源儲(chǔ)存、電子器件等眾多領(lǐng)域得到廣泛應(yīng)用[1-4]。與此同時(shí),ECNMs在生產(chǎn)、運(yùn)輸、使用、回收處置的過程中不可避免地釋放進(jìn)入環(huán)境,與環(huán)境中的植物接觸,且已有研究表明ECNMs能夠穿透植物細(xì)胞壁、細(xì)胞膜進(jìn)入體內(nèi),并造成包含細(xì)胞凋亡、組織病變、器官損傷、個(gè)體發(fā)育遲緩及存活率下降等在內(nèi)的多種植物毒性[5-8]。而目前關(guān)于ECNMs的研究以制備和應(yīng)用居多,對(duì)其植物毒性效應(yīng)及潛在的環(huán)境風(fēng)險(xiǎn)的研究鮮見報(bào)道,因此越來越多的學(xué)者開始關(guān)注這一問題,相繼開展了一系列研究。本文從ECNMs對(duì)植物生理生長的影響出發(fā),重點(diǎn)綜述了ECNMs對(duì)植物毒害、促進(jìn)及其他影響的研究進(jìn)展,在此基礎(chǔ)上歸納總結(jié)了ECNMs植物效應(yīng)作用機(jī)制,并對(duì)當(dāng)前的研究方法及趨勢進(jìn)行了探討與展望,對(duì)植物保護(hù)、食品健康及生態(tài)安全的研究具有重要意義。
1? ECNMs的環(huán)境來源
ECNMs因其獨(dú)特、優(yōu)異的性能得到廣泛應(yīng)用,據(jù)測算,ECNMs市場份額呈逐年遞增態(tài)勢,復(fù)合增長率達(dá)到20.1%,預(yù)計(jì)2020年將達(dá)到56.4億美元[9]。高額產(chǎn)量導(dǎo)致ECNMs在環(huán)境中暴露水平提高,在消費(fèi)和使用過程中可能釋放、擴(kuò)散進(jìn)入大氣和陸地,通過沉降、徑流等方式匯集和固定在土壤中。Mueller等[10]在2008年基于對(duì)瑞士土壤每年的物質(zhì)流進(jìn)行分析,推算出ECNMs暴露濃度為0.27 ng/(kg·d);Gottschalk等[11]在2009年基于對(duì)工程碳納米產(chǎn)品的生命周期分析提出ECNMs暴露濃度為0.55 ng/(kg·d),在歐洲、美國等高暴露地區(qū)可達(dá)1.53~5.26 pg/(kg·d);Sun等[12]在2014年對(duì)ECNMs生命周期分析后指出ECNMs暴露濃度增長迅速,達(dá)到1.09 μg/(kg·d)。此外,隨著近年來ECNMs在大氣中的濃度日益升高,其污染范圍和危害性日趨嚴(yán)重。Carboni等[13]對(duì)荷蘭阿姆斯特丹市土壤進(jìn)行采樣測量,發(fā)現(xiàn)高達(dá)48%的土壤樣本均有ECNMs的檢出,且在人口密集區(qū)、工業(yè)區(qū)周邊和下風(fēng)向區(qū)域檢出了更高的濃度;Kolosnjaj-Tabi等[14]指出,目前柴油機(jī)排氣含大量ECNMs,且隨著柴油車占比的增高,ECNMs在空氣中的濃度呈遞增趨勢,最終ECNMs會(huì)進(jìn)入人體或在土壤中固定沉積,引發(fā)一系列環(huán)境問題。
ECNMs在環(huán)境中富集并被植物吸收,通過植物進(jìn)入食物鏈,繼而對(duì)人類安全造成威脅,因?yàn)檗r(nóng)田土壤安全關(guān)乎人類健康。目前,ECNMs主要以緩釋/控釋肥料的納米包膜[15]、土壤環(huán)境傳感器[16]、土壤改良劑[17]、土壤修復(fù)劑[18]等形式進(jìn)入農(nóng)田土壤。如國外富含ECNMs的工業(yè)廢水經(jīng)活性污泥法處理后,富含ECNMs的剩余污泥60%會(huì)作為肥料直接施入農(nóng)田[19],ECNMs進(jìn)入土壤后將會(huì)長期固定、吸附在土壤中,移動(dòng)性降低,對(duì)農(nóng)田環(huán)境和植物生長產(chǎn)生長期、難以預(yù)料的影響[20,21]。
2? ECNMs的植物效應(yīng)
2.1? ECNMs對(duì)植物的毒害作用
關(guān)于ECNMs對(duì)植物個(gè)體發(fā)育及生理生長的影響,相關(guān)學(xué)者已開展諸多研究并取得了一定的成果(表1)。研究發(fā)現(xiàn),ECNMs對(duì)植物種子萌發(fā)及幼苗生長會(huì)產(chǎn)生抑制作用,對(duì)細(xì)胞內(nèi)線粒體造成損傷,并證明氧化應(yīng)激是其主要的毒性效應(yīng)作用機(jī)制[22,23]。Begum等[22]研究發(fā)現(xiàn),石墨烯能顯著降低卷心菜、番茄、紅菠菜等的生物量,高濃度(2 000 mg/L)石墨烯作用下,根毛幾乎消失,呈現(xiàn)明顯的時(shí)間-劑量-效應(yīng)關(guān)系。同樣,Ghodake等[24]在研究中也發(fā)現(xiàn)類似現(xiàn)象。Begum等[23]對(duì)此現(xiàn)象進(jìn)行深入研究,發(fā)現(xiàn)當(dāng)石墨烯為40 mg/L時(shí),擬南芥細(xì)胞的活性氧含量開始顯著上升,當(dāng)濃度達(dá)到80 mg/L時(shí),細(xì)胞中線粒體開始受到損傷;Begum等[25]還發(fā)現(xiàn)多壁碳納米管(Multi-walled carbon nanotubes,MWCNTs)也會(huì)對(duì)植物產(chǎn)生類似的毒性效應(yīng),紅菠菜暴露15 d后,體內(nèi)ROS累積表現(xiàn)出明顯的氧化脅迫癥狀;當(dāng)補(bǔ)充抗壞血酸后,這些效應(yīng)被逆轉(zhuǎn),證明ROS在MWCNTs毒性效應(yīng)中起主導(dǎo)作用,間接說明氧化應(yīng)激是造成MWCNTs毒性效應(yīng)的主要機(jī)制。此外,Begum等[22]發(fā)現(xiàn)MWCNTs的毒性效應(yīng)隨植物種類的不同而有所差異,與對(duì)照組相比,生菜、紅菠菜、黃瓜、水稻的根和莖生長受到抑制,而辣椒、大豆幾乎沒有觀察到毒性作用。
除此之外,近年來的諸多研究也證實(shí)ECNMs對(duì)植物存在毒性作用,主要表現(xiàn)為種子發(fā)芽率降低,幼苗根、莖發(fā)育遲緩,葉綠素、蛋白質(zhì)等含量下降,細(xì)胞膜被破壞。Nogueira等[26]研究發(fā)現(xiàn),經(jīng)氧化石墨烯(GO)處理的藻類細(xì)胞,ROS含量上升,細(xì)胞膜受到損傷,氧化應(yīng)激效應(yīng)顯著;同時(shí),隨時(shí)間的延長,GO發(fā)生團(tuán)聚,并吸附在藻類細(xì)胞表面形成藻類-納米碳聚集體,導(dǎo)致間接毒性效應(yīng)。Chang等[27]研究發(fā)現(xiàn),單壁碳納米管(Single-walled carbon nanotubes,SWCNTs)和MWCNTs處理均可導(dǎo)致小麥根系生物量、根長和根莖表面積發(fā)生顯著下降。同樣,袁剛強(qiáng)等[28]研究發(fā)現(xiàn),10~40 mg/L的SWCNTs延遲了水稻種子萌發(fā),降低了幼苗鮮重,且水稻葉綠素和可溶性蛋白含量隨SWCNTs濃度的增加而下降。
2.2? ECNMs對(duì)植物生長的促進(jìn)作用
近年來國內(nèi)外研究表明,ECNMs因暴露濃度和受試植物種類不同,對(duì)植物生長發(fā)育的影響并不顯著,基本不產(chǎn)生毒性效應(yīng),有的反而起促進(jìn)作用(表1)。研究發(fā)現(xiàn),適宜濃度范圍內(nèi)的ECNMs對(duì)植物種子萌發(fā)、根和莖的伸長、酶活性、營養(yǎng)品質(zhì)等具有正向調(diào)節(jié)作用[29-32]。Mondal等[33]用改性碳納米管(2.3~46 μg/L)處理芥菜種子,結(jié)果顯示最低濃度處理組(2.3 μg/L改性碳納米管)芥菜根、莖較對(duì)照組伸長2.5倍和1.6倍;Hatami等[34]用SWCNTs(50~800 μg/mL)處理天仙子,發(fā)現(xiàn)低濃度處理組發(fā)芽率提高,發(fā)芽時(shí)間降低;李佳慧[35]用0~100 mg/L CNTs處理文心蘭,發(fā)現(xiàn)低濃度CNTs(25、50 mg/L)對(duì)文心蘭球莖的增殖、分化具有顯著促進(jìn)作用,且有利于文心蘭的生根和壯苗;Park等[36]用0~2 000 mg/L MWCNTs處理胡蘿卜,結(jié)果顯示MWCNTs提高了胡蘿卜CAT的活性,從而減少了胡蘿卜H2O2含量,有延緩衰老的效果。
關(guān)于植物在添加ECNMs條件下種子發(fā)芽率提高、根和莖伸長的原因,有關(guān)學(xué)者進(jìn)行了研究,發(fā)現(xiàn)ECNMs可以滲透進(jìn)入植物種子內(nèi)部,有助于種子對(duì)水分的吸收,并調(diào)整其酶活性,從而促進(jìn)了種子的萌發(fā)及根、莖的伸長[37-40]。Khodakovskaya等[37]研究發(fā)現(xiàn)0~40 μg/mL MWCNTs可使番茄種子發(fā)芽率提高,同時(shí)發(fā)現(xiàn)種子的含水率高于對(duì)照組;Xiong等[38]研究發(fā)現(xiàn)低濃度富勒烯可促進(jìn)甘藍(lán)型油菜的發(fā)芽,并提出可通過施加適宜濃度的富勒烯,緩解干旱環(huán)境下水分脅迫對(duì)種子萌發(fā)及生長的不良影響;Rao等[39]用0~50 μg/L MWCNTs處理小麥、玉米、花生、大蒜,發(fā)現(xiàn)4種作物經(jīng)處理后的發(fā)芽速度較對(duì)照組快3~4倍,且幼苗葉片數(shù)量和大小呈現(xiàn)劑量依賴性,認(rèn)為低濃度MWCNTs通過促進(jìn)植物吸水來縮短發(fā)芽時(shí)間及提高生物量;來佳佳[40]在聚乙二醇模擬干旱脅迫條件下,用0~80 μg/L C60處理玉米和擬南芥種子,發(fā)現(xiàn)經(jīng)處理后的玉米和擬南芥根長均顯著長于對(duì)照組,深入研究發(fā)現(xiàn)擬南芥根部ROS含量明顯低于對(duì)照組,推測C60可能通過清除根部ROS的方式促進(jìn)根的伸長。
2.3? ECNMs對(duì)植物的其他影響
隨著ECNMs的廣泛使用,ECNMs將不可避免地釋放進(jìn)入環(huán)境在土壤中不斷累積,而土壤中分布著大量微生物,1 g土壤中微生物數(shù)量通常為幾億到幾百億個(gè),已有研究表明微生物所處的特殊的根際環(huán)境影響ECNMs對(duì)植物的作用[43,44]。Hao等[43]以C60、rGO、MWCNTs進(jìn)行水稻土壤盆栽試驗(yàn),發(fā)現(xiàn)變形桿菌的敏感度隨ECNMs種類的不同而變化,施加MWCNTs與rGO的土壤中變形桿菌數(shù)量顯著下降,進(jìn)而影響水稻的生長發(fā)育。另有研究發(fā)現(xiàn),在土培條件下,經(jīng)MWCNTs處理的番茄,開花數(shù)量和果實(shí)數(shù)為對(duì)照的2倍,且株高和后代種子數(shù)均提高[44];同時(shí),采用變性梯度凝膠電泳和焦磷酸測序法測定土壤微生物,發(fā)現(xiàn)變形菌和擬桿菌成為優(yōu)勢類群,認(rèn)為土壤微生物可將MWCNTs輸送到土壤中以促進(jìn)番茄生長,具體機(jī)制有待進(jìn)一步研究[44]。
3? ECNMs的植物效應(yīng)作用機(jī)制
迄今為止,關(guān)于ECNMs植物效應(yīng)的作用機(jī)制尚無統(tǒng)一定論,但目前普遍認(rèn)同的作用機(jī)制主要有氧化應(yīng)激、遮蔽效應(yīng)、損傷細(xì)胞膜、干擾生物信號(hào)的表達(dá)以及與共存污染物聯(lián)合作用等[45-49](圖1)。同時(shí),ECNMs植物效應(yīng)往往不是由單一機(jī)制引起的,通常是多種機(jī)制綜合作用的結(jié)果,目前其綜合效應(yīng)的研究尚處于探索階段。
3.1? 破壞細(xì)胞膜的完整性
呈針狀、片層狀等具有鋒利邊緣的ECNMs通過直接接觸細(xì)胞膜,對(duì)細(xì)胞進(jìn)行切割、穿刺或提取磷脂而破壞細(xì)胞膜完整性[45],大量胞質(zhì)流出后產(chǎn)生空腔結(jié)構(gòu),導(dǎo)致細(xì)胞死亡[47,50]。除此之外,ECNMs通過內(nèi)吞作用、主動(dòng)運(yùn)輸、離子通道等方式進(jìn)入細(xì)胞[51],并發(fā)生細(xì)胞內(nèi)化。如Liu等[52]用羧基富勒烯(C70)處理煙草,發(fā)現(xiàn)C70使煙草細(xì)胞壁增厚,且切斷了細(xì)胞膜和細(xì)胞壁之間的聯(lián)系,引起細(xì)胞膜的破裂損傷,導(dǎo)致細(xì)胞凋亡。
3.2? 氧化應(yīng)激
目前,氧化應(yīng)激被認(rèn)為是ECNMs植物毒性效應(yīng)主要的機(jī)制之一。活性氧(ROS)對(duì)信號(hào)傳導(dǎo)很重要,正常情況下生物體內(nèi)的抗氧化系統(tǒng)(包括抗氧化劑和抗氧化酶)能夠及時(shí)清除細(xì)胞內(nèi)多余ROS,并維持其動(dòng)態(tài)平衡[53];ECNMs能夠誘導(dǎo)ROS的產(chǎn)生,當(dāng)ROS大量累積超過生物體抵御能力時(shí),ROS無法被及時(shí)清除,此時(shí)生物體內(nèi)發(fā)生氧化應(yīng)激反應(yīng),導(dǎo)致脂質(zhì)、蛋白質(zhì)和核酸等生物大分子變性[52,54]、線粒體損傷甚至細(xì)胞凋亡[44]。Rong等[55]發(fā)現(xiàn)MWCNTs增強(qiáng)了蠶豆CAT、SOD、過氧化物酶(POD)、抗壞血酸過氧化物酶(APX)的活性,同時(shí)發(fā)現(xiàn)根系EP活性與細(xì)胞壞死數(shù)顯著增加,證實(shí)MWCNTs引起的氧化應(yīng)激導(dǎo)致根部的氧化損傷。
3.3? 遮蔽效應(yīng)
ECNMs常黏附于水生植物表面,團(tuán)聚形成植物-納米碳聚集體,降低植物對(duì)光的利用率并干擾營養(yǎng)物質(zhì)的吸收,產(chǎn)生遮蔽效應(yīng)[56],導(dǎo)致間接毒性。如牟鳳偉[57]在進(jìn)行SWCNTs斜生柵藻毒性試驗(yàn)時(shí)發(fā)現(xiàn),在高濃度暴露組中,SWCNTs會(huì)在斜生柵藻分泌物的作用下在藻細(xì)胞周圍大量聚集,降低光合作用效率,影響細(xì)胞的分裂增殖,導(dǎo)致斜生柵藻吸光度遠(yuǎn)低于對(duì)照組。
3.4? 干擾生物信號(hào)的表達(dá)
ECNMs通過損傷DNA并干擾生物信號(hào)的表達(dá)是其植物效應(yīng)的作用機(jī)制之一。ECNMs能夠引起DNA鏈的斷裂,引發(fā)基因突變、染色體畸變,同時(shí)誘導(dǎo)RNA表達(dá)失調(diào),干擾生物體內(nèi)酶的表達(dá),由此對(duì)植物體產(chǎn)生影響[41,58]。如Khodakovskaya等[58]用MWCNTs處理煙草,發(fā)現(xiàn)煙草細(xì)胞內(nèi)cycb基因表達(dá)程度顯著提高,僅在處理后6 h內(nèi)便增加至對(duì)照組的35倍;Hao等[41]研究了C60、還原型氧化石墨烯(rGO)和MWCNTs對(duì)水稻的影響,發(fā)現(xiàn)高濃度暴露下,水稻根中生長素、吲哚乙酸、油菜素類固醇和赤霉素4種植物生長調(diào)節(jié)劑的濃度較對(duì)照組顯著升高,水稻芽中吲哚乙酸和赤霉素的含量顯著提高,證明碳納米材料對(duì)植物體生長調(diào)節(jié)劑含量有調(diào)節(jié)作用。
3.5? 與共存污染物的聯(lián)合作用
ECNMs自身具有豐富的比表面積,在生產(chǎn)、運(yùn)輸、遷移、轉(zhuǎn)化過程中容易吸附并富集周圍環(huán)境中的有機(jī)/無機(jī)污染物,成為污染物運(yùn)載體,通過路易斯酸堿作用、靜電作用、π鍵作用、疏水作用等產(chǎn)生協(xié)同或拮抗作用,改變污染物的生物有效性[49,51],由此對(duì)生物產(chǎn)生影響。胡獻(xiàn)剛等[59]研究了砷、GO單一及復(fù)合污染對(duì)小麥生長的影響,發(fā)現(xiàn)低濃度砷促進(jìn)了種子萌發(fā),GO則無顯著影響,而GO聯(lián)合砷顯著抑制小麥種子萌發(fā);單一污染時(shí)小麥體內(nèi)MDA及抗氧化酶活性均提高,復(fù)合污染則顯著提高。復(fù)合過程中砷的形態(tài)從5價(jià)向3價(jià)和甲基砷轉(zhuǎn)化,說明GO對(duì)小麥生長有毒害作用,并能顯著增強(qiáng)砷對(duì)小麥萌發(fā)的毒性,今后的研究需注意GO與其他污染物間的協(xié)同作用。
4? 展望
ECNMs因其優(yōu)異的性能,在諸多領(lǐng)域得到廣泛應(yīng)用。與此同時(shí),由于ECNMs的環(huán)境暴露,其潛在的風(fēng)險(xiǎn)必須加以重視。近年來,國內(nèi)外眾多學(xué)者聚焦于ECNMs植物效應(yīng)這一問題,當(dāng)前已在該方面取得較多進(jìn)展。已有研究表明,ECNMs對(duì)植物具有一定的毒性,但也不乏積極作用。由于影響因素繁多復(fù)雜,而當(dāng)前的研究在植物類型、受試條件、研究手段等方面還存在一定的局限性,若要全面充分地認(rèn)識(shí)ECNMs的植物效應(yīng),準(zhǔn)確理解并闡明其作用機(jī)制,仍需進(jìn)行更加深入的研究。從已有報(bào)道來看,當(dāng)前關(guān)于ECNMs植物效應(yīng)的研究仍存在一些問題。
1)實(shí)際環(huán)境復(fù)雜多變。目前的試驗(yàn)?zāi)M條件與真實(shí)環(huán)境相比仍存在較大差異,當(dāng)前研究大多開展了ECNMs植物毒性急性試驗(yàn),而實(shí)際環(huán)境中的ECNMs多以低劑量、長期暴露的方式對(duì)植物產(chǎn)生影響;同時(shí),進(jìn)入環(huán)境中的ECNMs與當(dāng)?shù)刂参铩⑽⑸锶郝涞认嗷ビ绊懀壳叭狈@一系統(tǒng)的生態(tài)效應(yīng)評(píng)估。上述條件的限制使實(shí)驗(yàn)室研究結(jié)果與真實(shí)結(jié)果有所偏差,后續(xù)開展大田試驗(yàn)等真實(shí)環(huán)境條件下ECNMs植物效應(yīng)的研究十分必要。
2)聯(lián)合效應(yīng)研究不足。目前,關(guān)于ECNMs聯(lián)合或混合效應(yīng)的研究仍較少,而進(jìn)入環(huán)境中的ECNMs在水、氣、土等環(huán)境介質(zhì)中遷移、轉(zhuǎn)化,加之其強(qiáng)烈的吸附特性,ECNMs不可避免地與環(huán)境中其他污染物相互作用,所以聯(lián)合效應(yīng)才能更加準(zhǔn)確、真實(shí)地反映ECNMs對(duì)植物的影響,因此相關(guān)研究需要進(jìn)一步補(bǔ)充完善。
3)研究手段仍需豐富。目前研究中常用掃描電鏡、透射電鏡等手段觀察ECNMs在植物體內(nèi)的分布,但存在分辨率不足、靜態(tài)成像等缺陷,若要具體、清晰地了解ECNMs在植物體內(nèi)的吸收、轉(zhuǎn)運(yùn)行為,需要繼續(xù)豐富研究手段,利用標(biāo)記示蹤、熒光分析等技術(shù)進(jìn)行更為直觀詳盡的研究,加強(qiáng)蛋白質(zhì)組分析、基因組分析及表觀遺傳等分子水平的研究。
4)方法標(biāo)準(zhǔn)尚待規(guī)范。對(duì)于ECNMs生物效應(yīng)的研究,目前的研究常出現(xiàn)結(jié)論不一的情況,究其原因是當(dāng)前對(duì)ECNMs植物效應(yīng)定性定量的試驗(yàn)方法尚未加以規(guī)范,鑒于ECNMs影響因素的復(fù)雜性,今后的研究應(yīng)逐步建立起一套科學(xué)、系統(tǒng)的試驗(yàn)標(biāo)準(zhǔn)方法。
綜上所述,隨著未來ECNMs生產(chǎn)使用量的增加及在環(huán)境中的累積,對(duì)于ECNMs植物效應(yīng)的研究勢在必行,在此基礎(chǔ)上今后應(yīng)開展相應(yīng)的生物安全性評(píng)估及植物保護(hù)工作,并合理規(guī)劃原材料的生產(chǎn)使用量,以應(yīng)對(duì)ECNMs廣泛應(yīng)用而帶來的生態(tài)風(fēng)險(xiǎn)與環(huán)境挑戰(zhàn)。
參考文獻(xiàn):
[1] NOVOSELOV K S,F(xiàn)AL′KO V I,COLOMBO L,et al. A roadmap for grapheme[J].Nature,2012,490(7419):192-200.
[2] JELMY E J,RAMAKRISHNAN S,RANGARAJAN M,et al. Effect of different carbon fillers and dopant acids on electrical properties of polyaniline nanocomposites[J].Bulletin of materials science,2013,36(1):37-44.
[3] ACIK M,DARLING S B. Graphene in perovskite solar cells:Device design,characterization and implementation[J].Journal of materials chemistry A,2016,4(17):6185-6235.
[4] KOSTARELOS K,NOVOSELOV K S. Exploring the interface of graphene and biology[J].Science,2014,344(6181):261-263.
[5] ZHAO J,CAO X S,WANG Z Y,et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae[J].Water research,2017,111:18-27.
[6] GHODAKE G,SEO Y D,PARK D,et al. Phytotoxicity of carbon nanotubes assessed by brassica juncea and phaseolus mungo[J].Journal of nanoelectronics & optoelectronics,2010,5(5):157-160.
[7] 朱小山,朱? 琳,郎宇鵬,等.富勒烯及其衍生物對(duì)斑馬魚胚胎發(fā)育毒性的比較[J].中國環(huán)境科學(xué),2008,28(2):173-177.
[8] LI B,YANG J,HUANG Q,et al. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice[J].Npg Asia Materials,2013,5(5):237-239.
[9] PIKULA K S,ZAKHARENKO A M,CHAIKA V V,et al. Effects of carbon and silicon nanotubes and carbon nanofibers on marine microalgae,Heterosigma akashiwo[J].Environmental research,2018,166:473-480.
[10] MUELLER N C,NOWACK B. Exposure modeling of engineered nanoparticles in the environment[J].Environmental science & technology,2008,42(12):4447-4453.
[11] GOTTSCHALK F,SONDERER T,SCHOLZ R W,et al. Modeled environmental concentrations of engineered nanomaterials(TiO2,ZnO,Ag,CNT,fullerenes) for different regions[J].Environmental science & technology,2009,43(24):9216-9222.
[12] SUN T Y,GOTTSCHALK F,HUNGERB?譈HLER K,et al. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials[J].Environmental pollution,2014, 185(4):69-76.
[13] CARBONI A,HELMUS R,EMKE E,et al. Analysis of fullerenes in soils samples collected in The Netherlands[J].Environmental pollution,2016,219:47-55.
[14] KOLOSNJAJ-TABI J,SZWARC H,MOUSSA F. Carbon nanotubes:Culprit or witness of air pollution?[J].Nanotoday,2017,15:11-14.
[15] LIANG T B,YIN Q S,ZHANG Y L,et al. Effects of carbon nanoparticles application on the growth, physiological characteristics and nutrient accumulation in tobacco plants[J].Journal of food agriculture environment,2013,11(3):954-958.
[16] PALAPARTHY V S,HEMEN K,SURYA S G,et al. Graphene oxide based soil moisture microsensor for in situ agriculture applications[J].Sensors and actuators B:chemical,2018,273:1660-1669.
[17] SHAABAN M,VAN ZWIETEN L,BASHIR S,et al. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution[J].Journal of environmental management,2018,228(15):429-440.
[18] XIONG T,YUAN X,WANG H,et al. Implication of graphene oxide in Cd-contaminated soil:A case study of bacterial communities[J].Journal of environmental management,2018,205:99-106.
[19] WANG Y,WESTERHOFF P,HRISTOVSKi K D. Fate and biological effects of silver,titanium dioxide,and C60(fullerene) nanomaterials during simulated wastewater treatment processes[J].Journal of hazardous materials,2012,201-202:16-22.
[20] CHEN M,ZHOU S,ZHU Y,et al. Toxicity of carbon nanomaterials to liants,animals and microbes:Recent progress from 2015-present[J].Chemosphere,2018,206:255-264.
[21] NAVARRO D A,KOOKANA R S,MCLAUGHLIN M J,et al. Fate of radiolabeled C60 fullerenes in aged soils[J].Environmental pollution,2017,221:293-300.
[22] BEGUM P,IKHTIARI R,F(xiàn)UGETSU B. Graphene phytotoxicity in the seedling stage of cabbage,tomato,red spinach,and lettuce[J].Carbon,2011,49(12):3907-3919.
[23] BEGUM P,F(xiàn)UGETSU B. Induction of cell death by graphene in Arabidopsis thaliana,(Columbia ecotype) T87 cell suspensions[J].Journal of hazardous materials,2013,260(18):1032-1041.
[24] GHODAKE G,SEO Y D,PARK D,et al. Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo[J].Journal of nanoelectronics & optoelectronics,2010,5(5):157-160.
[25] BEGUM P,F(xiàn)UGETSU B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant[J].Journal of hazardous materials,2012,243(4):212-222.
[26] NOGUEIRA P F M,NAKABAYASHI D,ZUCOLOTTO V. The effects of graphene oxide on green algae Raphidocelis subcapitata[J].Aquatic toxicology,2015,166(8):29-35.
[27] CHANG X P,SONG Z G,XU Y L,et al. Effects of carbon nanotubes on growth of wheat seedlings and Cd uptake[J].Chemosphere,2020,240:124931.
[28] 袁剛強(qiáng),龔繼來,曾光明.單壁碳納米管材料對(duì)水稻幼苗的毒性效應(yīng)[J].環(huán)境科學(xué)學(xué)報(bào),2015,35(12):4143-4149.
[29] LAHIANI M H,CHEN J,IRIN F,et al. Interaction of carbon nanohorns with plants:Uptake and biological effects[J].Carbon,2015,81(1):607-619.
[30] ZHANG P,ZHANG R,F(xiàn)ANG X,et al. Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.):Short-and long-term exposure studies[J].Journal of hazardous materials,2016,317:543-551.
[31] OLESZCZUK P,JO■KO I,XING B. The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes[J].Journal of hazardous materials,2011,186(1):436-442.
[32] WANG X P,HAN H,LIU X Q,et al. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants[J].Journal of nanoparticle research,2012,14(6):841.
[33] MONDAL A,BASU R,DAS S,et al. Beneficial role of carbon nanotubes on mustard plant growth:An agricultural prospect[J].Journal of nanoparticle research,2011,13(10):4519-4528.
[34] HATAMI M,HADIAN J,GHORBANPOUR M. Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol[J].Journal of hazardous materials,2017, 324:306-320.
[35] 李佳慧.碳納米管處理對(duì)文心蘭類原球莖增殖、分化和無菌苗生長的影響及相關(guān)機(jī)理研究[D].南京:南京農(nóng)業(yè)大學(xué),2015.
[36] PARK S,AHN Y J. Multi-walled carbon nanotubes and silver nanoparticles differentially affect seed germination,chlorophyll content,and hydrogen peroxide accumulation in carrot (Daucus carota L.)[J].Biocatalysis and agricultural biotechnology,2016,8:257-262.
[37] KHODAKOVSKAYA M V,DERVISHI E,MAHMOOD M,et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth[J].Acs Nano,2012,6(8):3221-3227.
[38] XIONG J L,LI J,WANG H C,et al. Fullerol improves seed germination,biomass accumulation,photosynthesis and antioxidant system in Brassica napus L. under water stress[J].Plant Physiol Biochem,2018,129:130-140.
[39] RAO D P,SRIVASTAVA A. Enhancement of seed germination and plant growth of wheat,maize,peanut and garlic using multiwalled carbon nanotubes[J].European chemical bulletin,2014,3(5):502-504.
[40] 來佳佳. ROS參與新型碳納米材料促進(jìn)玉米根系伸長并提高抗旱性的探索研究[D].鄭州:河南農(nóng)業(yè)大學(xué),2018.
[41] TORREROCHE R D L,HAWTHORNE J,DENG Y,et al. Fulle
rene-enhanced accumulation of p,p′-DDE in agricultural crop species[J].Environmental science & technology,2012,46(17):9315-9323.
[42] KOLE C,KOLE P,RANDUNU K M,et al. Nanobiotechnology can boost crop production and quality:First evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia)[J].BMC Biotechnology,2013,13(1):37.
[43] HAO Y,MA C X,ZHANG Z T,et al. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem[J].Environmental pollution,2017,232:123-136.
[44] KHODAKOVSKAYA M V,KIM B S,KIM J N,et al. Carbon nanotubes as plant growth regulators:Effects on tomato growth,reproductive system,and soil microbial community[J].Small,2013,9(1):115-123.
[45] AKHAVAN O,GHADERI E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J].Acs Nano,2010,4(10):5731-5736.
[46] SINGH Z. Applications and toxicity of graphene family nanomaterials and their composites[J].Nanotechnology science & applications,2016,9(1):15-28.
[47] NOGUEIRA P F M,NAKABAYASHI D,ZUCOLOTTO V. The effects of graphene oxide on green algae Raphidocelis subcapitata[J].Aquatic toxicology,2015,166(8):29-35.
[48] ERSHOVA E S,SERGEEVA V A,CHAUSHEVA A I,et al. Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts[J].Mutation research-genetic toxicology and environmental mutagenesis,2016,805:46-57.
[49] WANG F,YAO J,LIU H,et al. Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment[J].Journal of hazardous materials,2015, 292:137-145.
[50] 諸曉丹,唐子圣.氧化石墨烯抗菌作用及其生物安全性的研究進(jìn)展[J].上海交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2016,36(3):447-450.
[51] 曹際玲,馮有智,林先貴.人工納米材料對(duì)植物-微生物影響的研究進(jìn)展[J].土壤學(xué)報(bào),2016,53(1):1-11.
[52] LIU Q,ZHANG X,ZHAO Y,et al. Fullerene-induced increase of glycosyl residue on living plant cell wall[J].Environmental science & technology,2013,47(13):7490-7498.
[53] 李? 婷,張超智,沈? 丹,等.石墨烯和氧化石墨烯的生物體毒性研究進(jìn)展[J].南京大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,52(2):235-243.
[54] LIANG J,XIA X,ZAMAN W Q,et al. Bioaccumulation and toxic effects of decabromodiphenyl ether in the presence of nanoscale zero-valent iron in an earthworm-soil system[J].Chemosphere,2017,169:78-88.
[55] RONG H,WANG C R,YU X R,et al. Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium[J].Ecotoxicology & environmental safety,2018,161:616-623.
[56] HU X,LU K,MU L,et al. Interactions between graphene oxide and plant cells:Regulation of cell morphology,uptake,organelle damage,oxidative effects and metabolic disorders[J].Carbon,2014,80(1):665-676.
[57] 牟鳳偉.不同類型的碳納米管對(duì)斜生柵藻的毒性效應(yīng)研究[D].長沙:中南林業(yè)科技大學(xué),2013.
[58] KHODAKOVSKAYA M V,DE SILVA K,BIRIS A S,et al. Carbon nanotubes induce growth enhancement of tobacco cells[J].ACS Nano,2012,6(3):2128-2135.
[59] 胡獻(xiàn)剛,康? 佳,盧凱成,等.氧化石墨烯聯(lián)合砷對(duì)小麥生態(tài)毒性[J].中國藥理學(xué)與毒理學(xué)雜志,2013,27(S1):63.
收稿日期:2019-04-20
基金項(xiàng)目:山東省自然科學(xué)基金項(xiàng)目(ZR2016DM09);國家大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201810445087);山東省高校科研項(xiàng)目(J15LH06)
作者簡介:張冠琳(1997-),女,山東壽光人,在讀本科生,研究方向?yàn)榄h(huán)境科學(xué),(電話)18340085930(電子信箱)guanlinz@126.com;通信作者,
劉玉真(1979-),女,山西絳縣人,講師,博士,主要從事土壤污染與治理研究,(電話)13854110599(電子信箱)yzhliu320@126.com。