江蘇省鹽城市亭湖新區初級中學 薛艷玲
問題導學是以問題的方式引導學生學習的教學方法,將其運用到教學中不僅能激發學生思維,幫助學生獲取知識,還能滿足不同層次學生的需求,層層深入。基于這一目標,教師要優化問題設計,加強趣味性、層次性及生活化問題的運用,加強學生對學科知識的反思與運用,本文將結合實例從不同方面闡述問題導學在初中數學課堂上的運用。
“愛為學習之始”,借助趣味性問題能激發學生興趣,使學生對將要探索的內容充滿期待,提高課堂參與度,與此同時,還能營造良好的學習氛圍,讓學生在問題與興趣的雙重驅動下深入挖掘自身潛力,高效解決問題,獲得能力的提升。
例如,在教學“平面直角坐標系”的內容時,教師拋出問題:如果在大海中航行,大海中沒有標志物,我們該如何確定自身的位置?由此引發交流,鼓勵學生各抒己見,暢所欲言,結合自身經驗給出方法。在巡視中,我認真傾聽學生想法,不斷給出肯定,并鼓勵其在全班分享。之后,在全班匯報時,學生給出了不同答案,十分有價值,如“日月星辰等不同的天體現象都是好的導航”“大海中的暗礁也是幫助我們辨認方向的好幫手”“風向是幫助我們確定航向的重要方向標志”等。由此,將問題與知識聯系起來,在逐步深入的交流中啟發學生思考,讓學生在不知不覺中進入新課。再如,在講到“一次函數”時,可借助教學軟件或線上教學平臺引導學生自主預習,讓其在趣味情境中前置學習,充分調動潛在學習能力,為后續正式、深入地探究奠定基礎,從而達到理想的教學效果。
借助這一設計,讓學生在問題的引導下逐步產生興趣,主動參與到課堂學習中,運用已有經驗展開思考,無形中提高自身的探究能力。在設計問題時,要關注學生興趣愛好,盡可能地投其所好,幫助學生快速融入課堂。
有效的問題導學,不僅要關注學生對問題的興趣,更要注重問題本身的層次性,逐步引導,啟發學生對知識的深入了解。由此,從最開始的基礎慢慢加大難度,讓問題逐漸深入知識的核心,使學生理解、掌握,最終習得知識。
以“一元二次方程”的教學為例,考慮到學生已有經驗,可設置層次性問題引導。首先,提問學生:你知道什么是一元二次方程嗎?在學生思考時,可針對字眼“元”與“次”展開引導,讓學生清楚“只含有一個未知數,并且未知項的最高次數是2的整式方程叫作一元二次方程”。在這一環節,還可對比學生之前學過的“一元一次方程”,加強學生對這一概念的理解。隨后,提出關鍵性的問題:如何解一元二次方程?之前預習過的學生很快就知道可運用配方法處理,在實際操作中發現:通過配方法可知道方程有兩個解、有一個解、無解。在這一基礎上,就可適當深入,引導學生研究求根公式的解法,讓學生運用判別式進行判斷,自主了解一元二次方程解的個數,由此強化解法運用。再如,在講到“平行線及其判定”時,就可將判定定理設計成問題,組織學生驗證分析,在解決問題的過程中,加強學生對概念的認知,以此鍛煉學生的分析能力,實現高效課堂,長此以往,就能培養學生自主探究的能力,讓其在分解問題的引導下深入核心,把握知識要點,為后續運用做好充分準備。
數學本身是一門抽象性很強的學科,需要建構生活模型引導學生思考,以此降低理解、探究難度。意識到這一點,教師就要借助生活化問題引導,提高學生知識運用的主動性,以此提升學科核心素養。
借助生活化問題展開教學,借助有限的模型突出數學知識,這樣一來,學生的興趣就會被充分調動,主動參與到課堂教學中。以“幾何圖形”的教學為例,生活中哪些地方有圖形,就可順勢舉例,如果自行車上有三角形,就可講解三角形的作用與其穩定性的特點;如果馬路上有菱形,就可圍繞菱形展開介紹,讓學生知道馬路上的菱形就是前方有人行橫道。借助這一過程,不僅讓學生掌握了圖形知識,還拓展了交通常識,無形中灌輸了生活化數學意識,使學生知道生活中處處有數學。再如,講到“勾股定理”時,鑒于這一部分與日常生活聯系密切,可引入旗桿測量、墻面垂直等問題,提高學生知識運用的靈活性,以此強化學生對定理的掌握,做到舉一反三。
生活化問題的運用不僅能讓學生集中精力學習,還能促進生活與學科的聯系,逐步拉近兩者之間的關系,最大限度地激發學生的探究信心。在這一過程中,要密切關注學生對問題的思考,及時調控,在關鍵處啟發引導,充分發揮生活情境的作用。
總之,問題導學是一種行之有效的教學方法,還需我們在課堂教學中不斷摸索、實踐,充分發揮問題價值,讓學生在多元的思考中養成良好的學習習慣,這樣才能實現學有所得、學有所用,促進自身學科核心素養的發展,同時實現數學知識的社會價值。