



摘要:澀味是影響果實(shí)品質(zhì)的重要因素之一,除了與單寧含量相關(guān),還受到兒茶素、表兒茶素、綠原酸、新綠原酸等多酚類次生代謝產(chǎn)物的影響。目前,多酚物質(zhì)的生物合成途徑已被解析,其在果實(shí)中的積累既受遺傳因素影響,又受環(huán)境因素調(diào)控。總結(jié)了果實(shí)澀味物質(zhì)分類、合成與積累、在不同果樹上的代謝調(diào)控研究進(jìn)展,闡述了果實(shí)脫澀機(jī)制與技術(shù),并從建立澀味精準(zhǔn)評(píng)價(jià)標(biāo)準(zhǔn)、完善澀味形成機(jī)制、探究不同果樹中澀味物質(zhì)代謝規(guī)律,以及選育風(fēng)味和抗氧化性俱佳的新品種幾個(gè)方面為果實(shí)澀味研究方向提出建議。
關(guān)鍵詞:果實(shí)品質(zhì);次生代謝;澀味
中圖分類號(hào):S66 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)08-1728-13
改革開放以來,我國果樹產(chǎn)業(yè)發(fā)展取得巨大成就,年產(chǎn)值約1萬億元,從業(yè)人口約1 億,果樹種植面積和產(chǎn)量居世界首位[1]。同時(shí)隨著我國經(jīng)濟(jì)持續(xù)增長,居民消費(fèi)水平不斷升級(jí),對(duì)高品質(zhì)農(nóng)產(chǎn)品的需求與日俱增。果實(shí)品質(zhì)主要以理化和感官兩個(gè)方面作為評(píng)價(jià)指標(biāo),前者主要包括營養(yǎng)物質(zhì)的種類和含量,后者主要指風(fēng)味物質(zhì)、色素物質(zhì)和果實(shí)肉質(zhì)等[2]。其中果實(shí)風(fēng)味作為評(píng)價(jià)果實(shí)品質(zhì)的內(nèi)在指標(biāo),也是決定其市場(chǎng)占有率、種植面積的重要因素,因此成為科學(xué)研究的重點(diǎn)。
澀味是果實(shí)的基本風(fēng)味之一,通常存在于未成熟的果實(shí)當(dāng)中,并隨著果實(shí)成熟逐漸減弱。但是部分栽培品種[3-4]和野生資源在果實(shí)成熟之后澀味依然比較明顯[5],阻礙了野生種質(zhì)的利用和優(yōu)良品種選育。果實(shí)澀味與單寧(tannins)、兒茶素(catechin,C)、表兒茶素(epicatechin,EC)、綠原酸(chlorogenicacid,CA)、新綠原酸(neochlorogenic acid)等多酚物質(zhì)含量相關(guān)[6-8],且在不同果樹上的遺傳調(diào)控存在差異。筆者在本研究中從果實(shí)澀味物質(zhì)分類、合成與積累,不同果樹澀味物質(zhì)研究方面取得的進(jìn)展,果實(shí)脫澀機(jī)制與技術(shù)幾個(gè)方面進(jìn)行綜述,并提出研究建議,以期為低澀味或無澀味的新品種選育提供思路。
1 果實(shí)澀味物質(zhì)分類
澀味即收斂感,是觸覺神經(jīng)末梢被刺激之后在口腔表面產(chǎn)生的干燥、收緊、粗糙感[9]。研究表明,澀味化合物主要包括單寧、兒茶素、表兒茶素、綠原酸、新綠原酸等多酚物質(zhì),其中單寧對(duì)澀味的影響最大[6-8]。
單寧,是植物體內(nèi)的多酚類次生代謝產(chǎn)物,它產(chǎn)生澀味的機(jī)制是其結(jié)構(gòu)中的酚羥基能夠與唾液蛋白發(fā)生縮合反應(yīng),使唾液蛋白發(fā)生沉淀,引起口腔的收斂和皺縮[10]。根據(jù)在醇溶液中的溶解性,單寧可被分為可溶性單寧(soluble tannin)和不溶性單寧(insolubletannin),其中可溶性單寧可溶于甲醇,而不溶性單寧在無水甲醇中的溶解度極低[11]。另外根據(jù)化學(xué)結(jié)構(gòu),果實(shí)中的單寧可被分為水解單寧(hydrolysabletannins,HTs)和縮合單寧(condensed tannins,CTs)兩大類[12]。HTs 由酸及其衍生物與葡萄糖或者多元醇以酯鍵相連形成,并可以被酸或者酶水解;根據(jù)水解產(chǎn)生的酚酸種類,水解單寧又被分為沒食子單寧和鞣花單寧[13]。研究表明鞣花單寧是石榴中主要的澀味物質(zhì)[14]。CTs 也被稱為原花青素(proanthocyanidins,PAs),是由兒茶素和表兒茶素等黃烷-3-醇單元結(jié)構(gòu)縮合而形成的聚合物[15],并能夠在熱酸作用下縮合成花色素[16]。據(jù)報(bào)道,果實(shí)澀味與原花青素以及其單體物質(zhì)兒茶素、表兒茶素含量密切相關(guān)[6-8]。然而,果實(shí)澀味并不一定與單寧含量呈線性正相關(guān),還受單寧結(jié)構(gòu)、種類的影響[17]。
酚酸也是廣泛存在于植物種子、果皮、蔬菜葉中的一類多酚物質(zhì),其結(jié)構(gòu)中包含一個(gè)羧酸基團(tuán)。植物體內(nèi)的酚酸主要包括羥基苯甲酸和羥基肉桂酸,其中綠原酸是由咖啡酸和奎寧酸結(jié)合形成的可溶性羥基肉桂酸[18]。新綠原酸是綠原酸的同分異構(gòu)體,且兩者均對(duì)果實(shí)澀味有一定影響。研究表明,桃果實(shí)中綠原酸和新綠原酸與果實(shí)澀味的相關(guān)系數(shù)r 分別為0.711 和0.660[4]。蘋果中也有類似研究,即果實(shí)成熟時(shí),酚酸在澀味顯著果實(shí)中的含量高于低澀味果實(shí)中的含量[6]。但是酚酸導(dǎo)致澀味的機(jī)制目前尚不清晰。
2 澀味物質(zhì)合成與積累
多酚是導(dǎo)致果實(shí)澀味的主要物質(zhì),其在植物體內(nèi)主要通過苯丙烷、類黃酮、酚酸三個(gè)途徑合成。多酚合成的前體物質(zhì)是苯丙氨酸,然后在苯丙氨酸裂解酶(PAL)、肉桂酸4-羥化酶(C4H)和4-香豆酰CoA 連接酶(4CL)3 種酶的催化下,依次生成肉桂酸、香豆酸和4-香豆酰CoA,這個(gè)過程稱為苯丙烷類代謝途徑。其中PAL是該過程的關(guān)鍵酶和限速酶。之后,多酚代謝經(jīng)4-香豆酰CoA轉(zhuǎn)入酚酸和類黃酮兩條途徑(圖1)。
根據(jù)KEGG 數(shù)據(jù)庫中的代謝通路,4-香豆酰CoA可以通過兩條途徑生成酚酸:一條是在羥基桂皮酰轉(zhuǎn)移酶(HCT)、香豆酸3-羥化酶(C3’H)催化下依次生成香豆酰莽草酸、咖啡酰莽草酸和咖啡酰輔酶A,另一條途徑是直接生成香豆酰奎寧酸,而咖啡酰輔酶A和香豆酰奎寧酸可分別被奎寧酸羥基桂皮酰轉(zhuǎn)移酶(HQT)和C3’H催化生成綠原酸。HCT是酚酸合成途徑中的關(guān)鍵酶[20]。杜仲NuHCT[21]和煙草NtHCT[22]能夠影響綠原酸及黃酮類化合物合成。綠原酸合成途徑中另一個(gè)關(guān)鍵酶是C3’H,屬于CYP450 家族。通過體外酶活性研究,發(fā)現(xiàn)該基因編碼的產(chǎn)物可催化咖啡酰莽草酸和咖啡酰奎寧酸的羥基化反應(yīng)并催化綠原酸的合成[23]。
4-香豆酰CoA 和丙二酰CoA 在查爾酮合成酶(CHS)作用下生成查爾酮,使多酚代謝轉(zhuǎn)入類黃酮生物合成途徑。查爾酮異構(gòu)酶(CHI)、黃烷酮3-羥化酶(F3H)等能夠催化查爾酮生成二氫山柰酚等二氫黃酮醇類物質(zhì)。二氫黃酮醇是花色苷、單寧和其他類黃酮化合物的共同前體產(chǎn)物,能經(jīng)二氫黃酮醇4-還原酶(DFR)催化形成無色花青素。無色花青素在植物體內(nèi)有兩個(gè)分支:能在花青素合成酶(ANS)作用下生成有色花青素,然后有色花青素通過花色素還原酶(ANR)催化得到表兒茶素,也可以直接經(jīng)無色花色素還原酶(LAR)催化形成兒茶素[24];最后表兒茶素和兒茶素聚合生成原花青素[25]。
原花青素的單體物質(zhì)兒茶素和表兒茶素在細(xì)胞質(zhì)中生成,但是原花青素只在液泡中積累,因此單體物質(zhì)需要運(yùn)輸?shù)揭号葜羞M(jìn)行聚合和儲(chǔ)存。原花青素單體可以通過MATE[26-27]和GST[28]等轉(zhuǎn)運(yùn)蛋白運(yùn)輸,也可以通過囊泡運(yùn)輸[29]。此外原花青素單體在液泡中的聚合還受漆酶影響。DkLAC1 促使可溶性單寧聚合為不溶性單寧[30];FaTT10 則促使草莓中原花青素單體的聚合[31]。
3 不同果實(shí)中澀味物質(zhì)代謝調(diào)控
3.1 柿
柿是我國的特色果樹之一,在我國已有2000 多年的栽培歷史[32]。研究表明,柿果實(shí)中的澀味物質(zhì)主要是原花青素,在新鮮澀柿果實(shí)中,其含量約占鮮果質(zhì)量的2%[33]。柿品種眾多,根據(jù)果實(shí)成熟時(shí)能否在樹上自然脫澀以及澀味性狀遺傳特點(diǎn),可將栽培品種分為完全甜柿(PCNA)和非完全甜柿(非PCNA)[34]。其中PCNA 果實(shí)在樹上就能自然脫澀,而非PCNA型果實(shí)在完全成熟之前仍然具有澀味,需要人工脫澀才能食用。
目前,F(xiàn)3’5’H、ANR 和LAR 已被報(bào)道與柿原花青素的生物合成相關(guān),且PCNA型果實(shí)中F3’5’H、ANR 表達(dá)量顯著低于非PCNA型[35-36]。通過對(duì)果實(shí)發(fā)育過程中ANR 和LAR 的表達(dá)量進(jìn)行測(cè)定,發(fā)現(xiàn)DkANR的表達(dá)量顯著高于DkLAR[35],這與原花青素結(jié)構(gòu)中表兒茶素含量較高的結(jié)果相一致[37]。在發(fā)育過程中,DkANR的表達(dá)量與原花青素含量存在正相關(guān);當(dāng)果實(shí)成熟時(shí),ANR表達(dá)受到強(qiáng)烈抑制,且伴隨原花青素含量的減少[37]。因此DkANR 可能是柿原花青素生物合成的關(guān)鍵基因。另外柿原花青素的合成與積累也受到轉(zhuǎn)錄因子的調(diào)節(jié)作用。通常來說,MYB 轉(zhuǎn)錄因子常與bHLH、WD40 蛋白形成MBW復(fù)合體共同調(diào)控多酚物質(zhì)的生物合成,同時(shí)也可單獨(dú)發(fā)揮調(diào)控作用。DkMYB2 能夠與bHLH轉(zhuǎn)錄因子結(jié)合,共同增強(qiáng)ANR 啟動(dòng)子活性,也可以單獨(dú)激活A(yù)NR啟動(dòng)子活性;而DkMYB4 則必須與bHLH共同發(fā)揮作用[37-38]。DkMYB4能夠與DkANS、DkF3’5’H、DkANR啟動(dòng)子區(qū)的MYBCORE順式基序結(jié)合,但對(duì)DkLAR的表達(dá)沒有影響[39]。同時(shí)DkMYB4 的表達(dá)受到ABA響應(yīng)因子DkbZIP5的調(diào)控。DkbZIP5能夠識(shí)別DkMYB4 啟動(dòng)子區(qū)的ABA響應(yīng)元件ABRE,激活DkMYB4 活性,正向調(diào)控原花青素的合成[40]。此外,柿中鑒定到的WD40 蛋白DkWDR1 能與DkMYB4結(jié)合并抑制DkMYB4 的表達(dá)[37]。
同時(shí)負(fù)調(diào)控因子也參與柿果實(shí)中原花青素的生物合成。DkMYB14 能夠抑制類黃酮生物合成途徑中相關(guān)基因的表達(dá),直接抑制原花青素的合成[41]。miRNA858b 通過負(fù)調(diào)控靶基因DkMYB19、Dk-MYB20 的表達(dá),抑制果實(shí)和葉片中原花青素的積累[42]。值得指出的是,部分調(diào)節(jié)因子通過分解澀味物質(zhì)或者改變其結(jié)構(gòu),從而改善果實(shí)風(fēng)味。Dk-MYB14 可以激活乙醛生物合成途徑的相關(guān)基因,促使乙醛的合成;而乙醛結(jié)構(gòu)中的醛基能與可溶性單寧的酚羥基發(fā)生酚醛縮合反應(yīng),使可溶性單寧轉(zhuǎn)為不溶性的單寧,使果實(shí)脫澀[41,43];DkLAC1 通過改變單寧的聚合度,最終使果實(shí)澀味減弱[3(0] 圖2)。
3.2 葡萄
單寧是葡萄酒中重要的苦味和澀味成分,賦予葡萄酒飽滿度和骨架感,因此也被譽(yù)為葡萄酒的靈魂[44]。葡萄各組織部位都含有單寧,但不同組織在單寧含量、聚合度、結(jié)構(gòu)方面存在差異,其中果皮單寧的主要組成單位是兒茶素、表兒茶素、表兒茶素沒食子酸酯和表沒食子兒茶素,聚合度為31~33[45];而種子中的單寧則富含表兒茶素,聚合度較低[24]。
在葡萄中,存在2 個(gè)與兒茶素合成高度相關(guān)的基因LAR1 和LAR2[46]。值得指出的是,MYB 因子VvMYBPA1 和VvMYBPA2 可以激活A(yù)NR 和LAR1的表達(dá),但不能激活LAR2[47-48],而VvMYBPAR則同時(shí)激活A(yù)NR、LAR1、LAR2、CHS、MATE 的表達(dá),促進(jìn)果實(shí)原花青素合成與運(yùn)輸[49]。VvMYB5a/5b 能夠與bHLH 家族的轉(zhuǎn)錄因子AtEGL3 共同調(diào)控VvCHI 和VvLAR1 的啟動(dòng)子活性,在果實(shí)發(fā)育早期正向調(diào)控葡萄果皮、果肉和種子中原花青素的合成[50-51]。葡萄中鑒定到的bHLH 家族轉(zhuǎn)錄因子VvMYC1[52]、VvMYCA1[53]通過與MYB轉(zhuǎn)錄因子相互作用,共同激活原花青素代謝通路上的結(jié)構(gòu)基因。同時(shí)從葡萄中分離出的VvWDR1 常與MYB和bHLH形成轉(zhuǎn)錄復(fù)合體,調(diào)控花青素和原花青素合成[54]。另外,WRKY家族的WKRY26 能夠與VvMYB5a 互作,激活VvCHI 以及液泡酸化相關(guān)基因,故在原花青素合成和積累中起正向調(diào)控作用[55]。此外還鑒定到一系列負(fù)調(diào)控因子。VvMYBC2-L1/L3 在過表達(dá)的情況下會(huì)降低原花青素的含量[56]。miRNA TAS4 能夠使VvMYBPA1、VvMYBPA2 的同源基因VvMYBA6 和VvMYBA7 沉默,從而負(fù)調(diào)控花和果實(shí)中原花青素的合成[5(7] 圖3)。
另外,環(huán)境因素也參與澀味物質(zhì)的代謝過程。光能夠誘導(dǎo)VvMYBF1 的表達(dá),從而提高VvFLS1 的轉(zhuǎn)錄水平[58]。遮光處理不但會(huì)減少原花青素的生物合成,還會(huì)導(dǎo)致其結(jié)構(gòu)中三羥基化亞基比例和平均聚合度降低[11],而果實(shí)澀味隨單寧聚合度的增大而增強(qiáng)[59]。但是紫外線的強(qiáng)度并不影響原花青素的含量與結(jié)構(gòu)組成[59]。水分虧缺會(huì)提高果皮中MYBPA1、MYBPA2 的表達(dá)豐度,增加原花青素的含量和聚合度[60]。此外用赤霉素(gibberellin,GA3)和塞苯隆(thidiazuron,TDZ)處理,也可使葡萄果皮和果肉中的可溶性單寧含量高于對(duì)照組[61]。
3.3 蘋果
果實(shí)成熟時(shí),綠原酸、兒茶素、表兒茶素和原花青素的含量在澀味顯著蘋果中分別是低澀味蘋果的1.91 倍、2.91 倍、2.05 倍和1.99 倍[6]。故這些多酚物質(zhì)很可能是蘋果澀味的主要來源。通過mQTL連鎖分析和GWAS全基因組關(guān)聯(lián)分析,均在16 號(hào)染色體上定位到與兒茶素、表兒茶素和原花青素相關(guān)的單一強(qiáng)關(guān)聯(lián)信號(hào),這說明三者物質(zhì)之間可能存在共同的分子調(diào)控機(jī)制[62-64]。
蘋果澀味物質(zhì)的代謝在轉(zhuǎn)錄水平上受到調(diào)節(jié)。蘋果中參與原花青素合成的MYB轉(zhuǎn)錄因子可以分成TT2 型[65]和PA1 型[66]。PA1 型轉(zhuǎn)錄因子MdMYBPA1能通過調(diào)節(jié)類黃酮生物合成途徑中不同結(jié)構(gòu)基因的表達(dá)水平,分別促進(jìn)原花青素和花青素的生物合成。在常溫條件下,TT2 型轉(zhuǎn)錄因子MdMYB9、Md-MYB11、MdMYB12 能夠激活MdMYBPA1 啟動(dòng)子活性,后者通過與LAR 和ANR 啟動(dòng)子區(qū)的MBS 元件結(jié)合,促使果實(shí)中原花青素的合成;而在低溫光照條件下,MdbHLH33 直接結(jié)合在MdMYBPA1 啟動(dòng)子的低溫響應(yīng)(LTR)順式元件上,兩者共同增強(qiáng)UFGT和ANS 啟動(dòng)子活性,促進(jìn)果實(shí)中花青素合成與積累[66]。NAC家族轉(zhuǎn)錄因子MdNAC52 既可以與Md-MYB9 和MdMYB11 的啟動(dòng)子結(jié)合間接參與原花青素和花青素合成,又能與MdLAR、MdANR啟動(dòng)子結(jié)合直接參與原花青素合成[67]。此外,MdHY5、Md-WRKY41、MdMYB12 三個(gè)轉(zhuǎn)錄因子能夠形成調(diào)控模塊,級(jí)聯(lián)調(diào)控紅肉蘋果原花青素的生物合成,其中MdWRKY41 能夠下調(diào)MdMYB12、MdLAR 和MdANR 的表達(dá),抑制原花青素的積累;而光響應(yīng)因子MdHY5 抑制MdWRKY41 轉(zhuǎn)錄[68]。另外,與在柿中的研究結(jié)果類似,miRNA858 能夠抑制MdMYB9和MdMYBPA1 的表達(dá)[69]。
蘋果澀味物質(zhì)的合成同時(shí)受到激素的調(diào)節(jié)作用。茉莉酸甲酯(MeJA)能夠通過上調(diào)MdMYB9 和MdMYB11 的表達(dá)增加原花青素的積累[70]。油菜素類固醇BR 可誘導(dǎo)MdJa2 的產(chǎn)生,MdJa2 能與Md-BZR1 形成復(fù)合物,通過抑制MdMYB9、MdMYB12 啟動(dòng)子活性而抑制原花青素的合成[7(1] 圖4)。
3.4 桃
桃中澀味物質(zhì)種類和含量在不同品種中存在顯著差異。通過對(duì)187 份桃果實(shí)中的多酚含量和種類進(jìn)行分析,發(fā)現(xiàn)兒茶素含量(w,后同)的變異范圍為0.00~157.46 mg · kg- 1,表兒茶素含量為0.00~5.80 mg · kg- 1,原花青素B1 含量則為0.00~382.91 mg·kg-1,新綠原酸含量為0.79~74.51 mg·kg-1,綠原酸含量為5.27~107.93 mg·kg-1 [72]。水蜜桃中的澀味物質(zhì)以表兒茶素、綠原酸為主;蟠桃中主要是表兒茶素和兒茶素,酚酸主要是綠原酸和新綠原酸;油桃品種中則分別是兒茶素和綠原酸[73]。另外桃中澀味物質(zhì)的積累與果實(shí)顏色相關(guān)。其中白肉桃和黃肉桃中原花青素的積累量都隨著果實(shí)成熟而降低,而DBF_基因型紅肉桃則相反,其含量在果實(shí)發(fā)育過程中急劇升高,在成熟期達(dá)到最高[3]。同時(shí)研究也表明白肉桃和黃肉桃中LAR 的酶活力和基因表達(dá)量與原花青素的積累相關(guān)性較高,而ANR與紅肉桃中原花青素的積累更為相關(guān)[3],這與白肉桃和黃肉桃中兒茶素含量高,而紅肉桃中表兒茶素含量高的研究結(jié)果相一致[74]。
同時(shí)一系列轉(zhuǎn)錄因子參與澀味物質(zhì)的代謝。在bHLH3 的激活作用下,PpMYBPA1 能夠增強(qiáng)DFR、LAR 和ANR 的啟動(dòng)子活性,但對(duì)UFGT啟動(dòng)子活性影響較低,因此在平衡原花青素和花色苷含量方面發(fā)揮重要作用[75]。PpMYB7 也是調(diào)控原花青素合成的重要轉(zhuǎn)錄因子,與PpMYBPA1 相比,其可選擇的bHLH 伴侶更為廣泛,能同時(shí)被bHLH3 和bHLH33激活[76]。另外桃中的PpbZIP5 也可以通過對(duì)ABA的響應(yīng)激活PpMYBPA1、PpMYB7 的轉(zhuǎn)錄。同時(shí)PpMYB18 通過與PpMYBPA1 競(jìng)爭(zhēng)bHLH結(jié)構(gòu),而成為原花青素生物合成的抑制因子[77]。此外,隨著高通量測(cè)序技術(shù)的不斷發(fā)展,與桃果實(shí)澀味相關(guān)的新基因也被不斷挖掘。丁體玉[72]將兒茶素、表兒茶素、原花青素B1、新綠原酸和綠原酸定位到LG4 上的14 069 638 和LG7 上的462 241 兩個(gè)位點(diǎn),區(qū)間內(nèi)共有9 個(gè)候選基因。Cao 等[78]在桃基因組2 號(hào)、3 號(hào)、5號(hào)和7 號(hào)染色體上鑒定到與兒茶素和表兒茶素含量相關(guān)的位點(diǎn),還挖掘到候選基因Prupe.2G087000。目前,桃中與酚酸生物合成的相關(guān)基因鮮有報(bào)道。Zhou 等[79]表明桃葉片中綠原酸的含量有可能與HCT、C3’H這兩個(gè)基因的表達(dá)量相關(guān)(圖5)。此外,桃果實(shí)澀味物質(zhì)含量也受環(huán)境因素的影響。酚酸和黃烷醇對(duì)光較敏感,套袋顯著抑制這兩類物質(zhì)的合成[80],在行間鋪設(shè)反光膜則可以促進(jìn)酚酸和單寧的積累[81]。水分虧缺可以明顯提高油桃Caldesi 2000 果皮中原花青素和酚酸的含量,而在Flordastar中則引起果皮原花青素和花青素含量增加[82]。
4 果實(shí)脫澀技術(shù)
澀味通常存在于未成熟的果實(shí)中,并隨著果實(shí)成熟逐漸減弱,但是部分栽培品種和野生資源中澀味物質(zhì)的含量在果實(shí)成熟之后依然較高。如DBF_基因型的紅肉桃色澤艷麗,富含多酚物質(zhì),抗氧化能力強(qiáng),深受消費(fèi)者青睞,但是其果實(shí)中原花青素的含量在果實(shí)成熟時(shí)達(dá)到最高[3,72],對(duì)果實(shí)風(fēng)味產(chǎn)生了不利影響。因而除了從分子調(diào)控方面探索澀味物質(zhì)的代謝過程,還應(yīng)當(dāng)關(guān)注果實(shí)脫澀技術(shù)的研究,為提高果實(shí)品質(zhì)和進(jìn)行種質(zhì)創(chuàng)新提供技術(shù)支撐。
果實(shí)脫澀的機(jī)制主要包括兩個(gè)方面:一是在脫澀過程中產(chǎn)生的乙醛能與可溶性單寧發(fā)生酚醛縮合反應(yīng),通過將可溶性單寧轉(zhuǎn)為不溶性單寧,降低果實(shí)澀味[43];二是在脫澀過程中,果肉中的果膠、原生質(zhì)膜和細(xì)胞壁會(huì)與多糖發(fā)生凝膠反應(yīng),形成果膠和單寧復(fù)合體,使?jié)断83]。目前在柿果實(shí)脫澀方面的研究較多,如冷水脫澀[84]、溫水脫澀[85]、N2脫澀和CO2脫澀[86]等。但是冷水和溫水脫澀易導(dǎo)致果實(shí)變軟、褐化、風(fēng)味變淡等,不適合大規(guī)模處理;而N2處理雖然能夠使果實(shí)保持較好脆度,并不在果皮表面產(chǎn)生褐斑,但是該方法成本較高,只適合大規(guī)模處理[87]。目前CO2 處理是廣泛使用的柿果實(shí)脫澀方法,同時(shí)為防止果肉脫澀后褐變,常將1-甲基環(huán)丙烯(1-MCP)與CO2結(jié)合使用[88]。
5 展望
近年來,隨著我國果樹產(chǎn)業(yè)的迅速發(fā)展和人民消費(fèi)水平的提升,對(duì)果品市場(chǎng)的要求愈加嚴(yán)格。利用野生資源或者地方品種培育新型種質(zhì),是滿足人民群眾對(duì)綠色、優(yōu)質(zhì)、營養(yǎng)、多樣化果品需求的有效途徑,但在這一過程中易引入澀味性狀。目前在果實(shí)澀味物質(zhì)種類、生物合成途徑、代謝調(diào)控、果實(shí)脫澀等方面取得了一系列成果,這為完善果實(shí)澀味形成機(jī)制奠定了基礎(chǔ),也為選育低澀味或無澀味的果樹新品種提供了依據(jù)。但是果實(shí)澀味研究方面還存在不足,建議加強(qiáng)以下方面的研究:(1)建立精準(zhǔn)果實(shí)澀味評(píng)價(jià)標(biāo)準(zhǔn)。《果樹種質(zhì)資源描述符》中把果實(shí)澀味分為無、微、中、多4 個(gè)等級(jí)[89],但在實(shí)際工作中,不同等級(jí)之間的界限還較為模糊。另外,澀味敏感度因人而異,主觀判斷也會(huì)使?jié)对u(píng)價(jià)結(jié)果出現(xiàn)偏差。因此,需要采用科學(xué)的感官評(píng)價(jià)方法[90],建立精準(zhǔn)的果實(shí)澀味評(píng)價(jià)標(biāo)準(zhǔn)。(2)完善果實(shí)澀味的形成機(jī)制,探究不同果實(shí)中澀味物質(zhì)的遺傳規(guī)律。果實(shí)中的澀味物質(zhì)種類較多,但是不同澀味物質(zhì)導(dǎo)致的澀味強(qiáng)弱并不明確;兒茶素和表兒茶素聚合生成主要澀味物質(zhì)—單寧的途徑尚不清晰,且對(duì)綠原酸和新綠原酸的研究尚不充分。同時(shí)由于澀味物質(zhì)的含量與種類在不同果樹中存在差異,同源基因在不同物種中的調(diào)控途徑存在特異性,所以充分利用多種試驗(yàn)手段,完善果實(shí)澀味形成機(jī)制,探究不同果實(shí)中澀味物質(zhì)遺傳規(guī)律,發(fā)掘關(guān)鍵基因,對(duì)滿足不同的育種需求具有重要指導(dǎo)意義。(3)加強(qiáng)果實(shí)脫澀研究。目前脫澀技術(shù)的研究集中于柿果實(shí)上,但生產(chǎn)實(shí)踐中發(fā)現(xiàn)其他果實(shí)中的部分種質(zhì)也存在澀味明顯的現(xiàn)象,卻缺乏相應(yīng)的研究。故有必要開展不同果樹果實(shí)脫澀方法的探索,從而為提高果實(shí)品質(zhì)和進(jìn)行種質(zhì)創(chuàng)新提供技術(shù)支撐。(4)尋求風(fēng)味與抗氧化能力之間的平衡,進(jìn)行種質(zhì)創(chuàng)新。單寧、綠原酸和新綠原酸都具有強(qiáng)抗氧化性,在果樹生長發(fā)育、抵抗生物脅迫[91]和非生物脅迫[92]以及促進(jìn)人體健康方面發(fā)揮著積極的調(diào)節(jié)作用[93-94]。但是澀味物質(zhì)含量過高又會(huì)影響果實(shí)風(fēng)味,降低果實(shí)品質(zhì)。因此有必要通過種質(zhì)創(chuàng)新,選育具有強(qiáng)抗氧化能力的低澀味新品種。
參考文獻(xiàn)References:
[1] 劉鳳之,王海波,胡成志. 我國主要果樹產(chǎn)業(yè)現(xiàn)狀及“十四五”發(fā)展對(duì)策[J]. 中國果樹,2021(1):1-5.
LIU Fengzhi,WANG Haibo,HU Chengzhi. Current situation ofmain fruit tree industry in China and it’s development countermeasureduring the“The 14th Five Year Plan”period[J]. ChinaFruits,2021(1):1-5.
[2] 趙智慧,周俊義. 果樹果實(shí)內(nèi)在品質(zhì)形成及評(píng)價(jià)方法研究進(jìn)展[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2002,25(S1):111-114.
ZHAO Zhihui,ZHOU Junyi. The review of development andevaluation of fruits internal quality[J]. Journal of AgriculturalUniversity of Hebei,2002,25(S1):111-114.
[3] 嚴(yán)娟,宋志忠,蔡志翔,沈志軍,馬瑞娟,俞明亮. 3 種果肉顏色桃原花青素積累[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2018,34(3):651-656.
YAN Juan,SONG Zhizhong,CAI Zhixiang,SHEN Zhijun,MARuijuan,YU Mingliang. Proanthocyanidin accumulation inpeach fruit with three types of flesh color[J]. Jiangsu Journal ofAgricultural Sciences,2018,34(3):651-656.
[4] 徐子媛,嚴(yán)娟,蔡志翔,孫朦,宿子文,沈志軍,馬瑞娟,俞明亮.桃果實(shí)糖酸和酚類物質(zhì)與口感風(fēng)味的相關(guān)性[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2022,38(1):190-199.
XU Ziyuan,YAN Juan,CAI Zhixiang,SUN Meng,SU Ziwen,SHEN Zhijun,MA Ruijuan,YU Mingliang. Correlation be- tween soluble sugar,organic acid and phenolic substances withtasted flavor in peach fruit[J]. Jiangsu Journal of AgriculturalSciences,2022,38(1):190-199.
[5] HUANG R,F(xiàn)ANG W,XIE X Q,LIU Y T,XU C M. Identificationof key astringent compounds in aronia berry juice[J]. FoodChemistry,2022,393:133431.
[6] 乜蘭春,孫建設(shè). 蘋果果實(shí)酚類物質(zhì)含量與果實(shí)苦澀關(guān)系的研究[J]. 園藝學(xué)報(bào),2005,32(5):778-782.
NIE Lanchun,SUN Jianshe. Relationship between the content ofphenolic compounds and the taste of astringency and bitternessin apple fruit[J]. Acta Horticulturae Sinica,2005,32(5):778-782.
[7] 王坤范,陳秀芳. 桃果實(shí)多酚氧化酶性質(zhì)的研究[J]. 北京農(nóng)業(yè)大學(xué)學(xué)報(bào),1995,21(4):370-376.
WANG Kunfan,CHEN Xiufang. The study of polyphenol oxidaseproperty in peach[J]. Acta Agriculturae Universitatis Pekinensis,1995,21(4):370-376.
[8] 趙文杰,薛冰,胡明華,敬思群. 葡萄皮渣中單寧的提取純化及含量測(cè)定[J]. 中國釀造,2010,29(8):152-156.
ZHAO Wenjie,XUE Bing,HU Minghua,JING Siqun. Extractionand purification technology of tannins from grape residueand determination of tannins contents[J]. China Brewing,2010,29(8):152-156.
[9] SOARES S,BRAND?O E,MATEUS N,DE FREITAS V. Sensorialproperties of red wine polyphenols:Astringency and bitterness[J]. Critical Reviews in Food Science and Nutrition,2017,57(5):937-948.
[10] 狄瑩,石碧. 植物單寧化學(xué)研究進(jìn)展[J]. 化學(xué)通報(bào),1999,62(3):2-6.
DI Ying,SHI Bi. Advances in plant tannin chemistry[J]. Chemistry,1999,62(3):2-6.
[11] 張寶善,陳錦屏,盧勇. 水果的澀味研究[J]. 食品研究與開發(fā),1998,19(1):31-34.
ZHANG Baoshan,CHEN Jinping,LU Yong. Study of the astringencyof the fruit[J]. Food Research and Development,1998,19(1):31-34.
[12] BHAT T K,SINGH B,SHARMA O P. Microbial degradation oftannins:A current perspective[J]. Biodegradation,1998,9(5):343-357.
[13] 舒暢,趙韓棟,焦文曉,范新光,姜微波. 植物單寧的生物活性研究進(jìn)展[J]. 食品工業(yè)科技,2018,39(17):328-334.
SHU Chang,ZHAO Handong,JIAO Wenxiao,F(xiàn)AN Xinguang,JIANG Weibo. Research progress on the bioactivity of plant origintannins[J]. Science and Technology of Food Industry,2018,39(17):328-334.
[14] ELFALLEH W,TLILI N,NASRI N,YAHIA Y,HANNACHIH,CHAIRA N,YING M,F(xiàn)ERCHICHI A. Antioxidant capacitiesof phenolic compounds and tocopherols from Tunisianpomegranate (Punica granatum) fruits[J]. Journal of Food Science,2011,76(5):707-713.
[15] 卜洪洋. 原花青素提取純化工藝及生產(chǎn)過程紅外分析[D]. 北京:北京林業(yè)大學(xué),2016.
BU Hongyang. Extraction- purification process and IR analysisproduction process of procyanidins[D]. Beijing:Beijing ForestryUniversity,2016.
[16] 羅曉文,劉敏,齊曉花,徐強(qiáng),陳學(xué)好. 果實(shí)澀味分子研究進(jìn)展[J]. 分子植物育種,2013,11(5):647-656.
LUO Xiaowen,LIU Min,QI Xiaohua,XU Qiang,CHEN Xuehao.Molecular research progress in fruit astringent[J]. MolecularPlant Breeding,2013,11(5):647-656.
[17] 何強(qiáng),姚開,石碧. 植物單寧的營養(yǎng)學(xué)特性[J]. 林產(chǎn)化學(xué)與工業(yè),2001,21(1):80-85.
HE Qiang,YAO Kai,SHI Bi. Nutriological properties of vegetabletannins[J]. Chemistry amp; Industry of Forest Products,2001,21(1):80-85.
[18] KUMAR N,GOEL N. Phenolic acids:natural versatile moleculeswith promising therapeutic applications[J]. BiotechnologyReports,2019,24:e00370.
[19] BILLET K,MALINOWSKA M A,MUNSCH T,UNLUBAYIRM,DE BERNONVILLE T D,BESSEAU S,COURDAVAULTV,OUDIN A,PICHON O,CLASTRE M,GIGLIOLI- GUIVARC’HN,LANOUE A. Stilbenoid- enriched grape cane extractsfor the biocontrol of grapevine diseases[M]//MéRILLONJ M,RAMAWAT K G. Plant defence:Biological control progressin biological control. Cham:Springer International Publishing,2020:215-239.
[20] 耿颯,徐存拴,李玉昌. 木質(zhì)素的生物合成及其調(diào)控研究進(jìn)展[J]. 西北植物學(xué)報(bào),2003,23(1):171-181.
GENG Sa,XU Cunshuan,LI Yuchang. Advance in biosynthesisof lignin and its regulation[J]. Acta Botanica Boreali-OccidentaliaSinica,2003,23(1):171-181.
[21] 李鐵柱,杜紅巖,朱高浦. 杜仲綠原酸生物合成途徑相關(guān)基因的差異表達(dá)[J]. 經(jīng)濟(jì)林研究,2013,31(4):32-38.
LI Tiezhu,DU Hongyan,ZHU Gaopu. Differential expression ofrelated genes of chlorogenic acid biosynthetic in Eucommia ulmoides[J]. Nonwood Forest Research,2013,31(4):32-38.
[22] 李洋,李明,岳瑋,丁新華,儲(chǔ)昭輝. 煙草NtHCT 基因?qū)Υ紊x物質(zhì)綠原酸和類黃酮合成的影響[J]. 中國煙草學(xué)報(bào),2015,21(6):127-131.
LI Yang,LI Ming,YUE Wei,DING Xinhua,CHU Zhaohui. Effectof NtHCT gene on synthesis of chlorogenic acid and flavonoidin tobacco[J]. Acta Tabacaria Sinica,2015,21(6):127-131.
[23] 亓希武,徐道華,于盱,房海靈,李維林,梁呈元. 金銀花香豆酸-3-羥化酶基因LjC3H2 的克隆及表達(dá)分析[J]. 分子植物育種,2018,16(4):1092-1099.
QI Xiwu,XU Daohua,YU Xu,F(xiàn)ANG Hailing,LIWeilin,LIANGChengyuan. Cloning and expression analysis of LjC3H2 fromLonicera japonica Thunb.[J]. Molecular Plant Breeding,2018,16(4):1092-1099.
[24] DIXON R A,LIU C G,JUN J H. Metabolic engineering of anthocyaninsand condensed tannins in plants[J]. Current Opinionin Biotechnology,2013,24(2):329-335.
[25] FENG H J,LI Y J,WANG S F,ZHANG L L,LIU Y C,XUE F,SUN Y Q,WANG Y M,SUN J. Molecular analysis of proanthocyanidinsrelated to pigmentation in brown cotton fibre (Gossypiumhirsutum L.) [J]. Journal of Experimental Botany,2014,65(20):5759-5769.
[26] YANG S C,JIANG Y,XU L Q,SHIRATAKE K,LUO Z R,ZHANG Q L. Molecular cloning and functional characterizationof DkMATE1 involved in proanthocyanidin precursor transportin persimmon (Diospyros kaki Thunb.) fruit[J]. Plant Physiology and Biochemistry,2016,108:241-250.
[27] CHEN S Y,TANG Y M,HU Y Y,WANG Y,SUN B,WANG XR,TANG H R,CHEN Q. FaTT12-1,a multidrug and toxin extrusion(MATE) member involved in proanthocyanidin transport instrawberry fruits[J]. Scientia Horticulturae,2018,231:158-165.
[28] PéREZ-DíAZ R,MADRID-ESPINOZA J,SALINAS-CORNEJOJ,GONZáLEZ-VILLANUEVA E,RUIZ-LARA S. Differentialroles for VviGST1,VviGST3,and VviGST4 in proanthocyanidinand anthocyanin transport in Vitis vinifera[J]. Frontiers inPlant Science,2016,7:1166.
[29] ZHAO J,PANG Y Z,DIXON R A. The mysteries of proanthocyanidintransport and polymerization[J]. Plant Physiology,2010,153(2):437-443.
[30] HU Q N,LUO C,ZHANG Q L,LUO Z R. Isolation and characterizationof a Laccase gene potentially involved in proanthocyanidinpolymerization in oriental persimmon (Diospyros kakiThunb.) fruit[J]. Molecular Biology Reports,2013,40(4):2809-2820.
[31] HOU G Y. FaTT10,a laccasel-like polyphenol oxidase involvedin the accumulation of proanthocyanins monomerin strawberryfruit[J]. International Journal of Agriculture and Biology,2021,25(6):1222-1230.
[32] 王仁梓. 關(guān)于羅田甜柿原產(chǎn)地問題的探討[J]. 中國果樹,1983(2):16-19.
WANG Renzi. Discussion on the origin of Luotian sweet persimmon[J]. China Fruits,1983(2):16-19.
[33] 費(fèi)學(xué)謙,王勁風(fēng),周立紅,龔榜初,吳開云. 甘、澀柿果實(shí)主要化學(xué)成份的研究[J]. 林業(yè)科學(xué)研究,1994,7(1):106-110.
FEI Xueqian,WANG Jinfeng,ZHOU Lihong,GONG Bangchu,WU Kaiyun. A study on chemical compositions of astringentand non- astringent type fruits of persimmons[J]. Forest Research,1994,7(1):106-110.
[34] YONEMORI K,MATSUSHIMA J,SUGIURA A. Differencesin tannins of non- astringent and astringent type fruits of Japanesepersimmon (Diospyros kaki Thunb.)[J]. Journal of the JapaneseSociety for Horticultural Science,1983,52(2):135-144.
[35] AKAGI T,IKEGAMI A,SUZUKI Y,YOSHIDA J,YAMADAM,SATO A,YONEMORI K. Expression balances of structuralgenes in shikimate and flavonoid biosynthesis cause a differencein proanthocyanidin accumulation in persimmon (Diospyros kakiThunb.) fruit[J]. Planta,2009,230(5):899-915.
[36] NAKAGAWA T,NAKATSUKA A,YANO K,YASUGAHIRAS,NAKAMURA R,SUN N,ITAI A,SUZUKI T,ITAMURAH. Expressed sequence tags from persimmon at different developmentalstages[J]. Plant Cell Reports,2008,27(5):931-938.
[37] GIL-MU?OZ F,SáNCHEZ-NAVARRO J A,BESADA C,SALVADORA,BADENES M L,DEL MAR NAVAL M,RíOS G.MBW complexes impinge on anthocyanidin reductase gene regulationfor proanthocyanidin biosynthesis in persimmon fruit[J].Scientific Reports,2020,10:3543.
[38] AKAGI T,IKEGAMI A,YONEMORI K. DkMyb2 wound-inducedtranscription factor of persimmon (Diospyros kakiThunb.),contributes to proanthocyanidin regulation[J]. Planta,2010,232(5):1045-1059.
[39] AKAGI T,IKEGAMI A,TSUJIMOTO T,KOBAYASHI S,SATOA,KONO A,YONEMORI K. DkMyb4 is a MYB transcriptionfactor involved in proanthocyanidin biosynthesis in persimmonfruit[J]. Plant Physiology,2009,151(4):2028-2045.
[40] AKAGI T,KATAYAMA-IKEGAMI A,KOBAYASHI S,SATOA,KONO A,YONEMORI K. Seasonal abscisic acid signal anda basic leucine zipper transcription factor,DkbZIP5,regulateproanthocyanidin biosynthesis in persimmon fruit[J]. Plant Physiology,2012,158(2):1089-1102.
[41] CHEN W X,ZHENG Q Y,LI J W,LIU Y,XU L Q,ZHANG QL,LUO Z R. DkMYB14 is a bifunctional transcription factorthat regulates the accumulation of proanthocyanidin in persimmonfruit[J]. The Plant Journal,2021,106(6):1708-1727.
[42] YANG S C,ZHANG M,XU L Q,LUO Z R,ZHANG Q L.MiR858b inhibits proanthocyanidin accumulation by the repressionof DkMYB19 and DkMYB20 in persimmon[J]. Frontiers inPlant Science,2020,11:576378.
[43] TAIRA S,SATOH I,WATANABE S. Relationship between differencesin the ease of removal of astringency among fruits ofJapanese persimmon (Diospyros kaki Thunb.) and their ability toaccumulate ethanol and acetaldehyde[J]. Journal of the JapaneseSociety for Horticultural Science,1992,60(4):1003-1009.
[44] 朱虹,張平,李新榜. 葡萄酒的靈魂之一:不可或缺的單寧[J].中外葡萄與葡萄酒,2008(5):47-51.
ZHU Hong,ZHANG Ping,LI Xinbang. One of the soul of wine:The indispensable tannins[J]. Sino-Overseas Grapevine amp; Wine,2008(5):47-51.
[45] SOUQUET J M,CHEYNIER V,BROSSAUD F,MOUTOUNETM. Polymeric proanthocyanidins from grape skins[J]. Phytochemistry,1996,43(2):509-512.
[46] WEI X F,JU Y L,MA T T,ZHANG J X,F(xiàn)ANG Y L,SUN X Y.New perspectives on the biosynthesis,transportation,astringencyperception and detection methods of grape proanthocyanidins[J].Critical Reviews in Food Science and Nutrition,2021,61(14):2372-2398.
[47] BOGS J,JAFFé F W,TAKOS A M,WALKER A R,ROBINSONS P. The grapevine transcription factor VvMYBPA1 regulatesproanthocyanidin synthesis during fruit development[J].Plant Physiology,2007,143(3):1347-1361.
[48] TERRIER N,TORREGROSA L,AGEORGES A,VIALET S,VERRIèS C,CHEYNIER V,ROMIEU C. Ectopic expressionof VvMybPA2 promotes proanthocyanidin biosynthesis in grapevineand suggests additional targets in the pathway[J]. PlantPhysiology,2009,149(2):1028-1041.
[49] KOYAMA K,NUMATA M,NAKAJIMA I,GOTO-YAMAMOTON,MATSUMURA H,TANAKA N. Functional characterizationof a new grapevine MYB transcription factor and regulationof proanthocyanidin biosynthesis in grapes[J]. Journal of ExperimentalBotany,2014,65(15):4433-4449.
[50] DELUC L,BARRIEU F,MARCHIVE C,LAUVERGEAT V,DECENDIT A,RICHARD T,CARDE J P,ME?RILLON J M,HAMDI S. Characterization of a grapevine R2R3- MYB transcriptionfactor that regulates the phenylpropanoid pathway[J].Plant Physiology,2006,140(2):499-511.
[51] DELUC L,BOGS J,WALKER A R,F(xiàn)ERRIER T,DECENDITA,MERILLON J M,ROBINSON S P,BARRIEU F. The tran- scription factor VvMYB5b contributes to the regulation of anthocyaninand proanthocyanidin biosynthesis in developinggrape berries[J]. Plant Physiology,2008,147(4):2041-2053.
[52] HICHRI I,HEPPEL S C,PILLET J,LéON C,CZEMMEL S,DELROT S,LAUVERGEAT V,BOGS J. The basic helix-loophelixtranscription factor MYC1 is involved in the regulation ofthe flavonoid biosynthesis pathway in grapevine[J]. MolecularPlant,2010,3(3):509-523.
[53] MATUS J T,POUPIN M J,CA?óN P,BORDEU E,ALCALDEJ A,ARCE- JOHNSON P. Isolation of WDR and bHLHgenes related to flavonoid synthesis in grapevine (Vitis viniferaL.)[J]. Plant Molecular Biology,2010,72(6):607-620.
[54] GIL-MU?OZ F,SáNCHEZ-NAVARRO J A,BESADA C,SALVADORA,BADENES M L,DEL MAR NAVAL M,RíOS G.MBW complexes impinge on anthocyanidin reductase gene regulationfor proanthocyanidin biosynthesis in persimmon fruit[J].Scientific Reports,2020,10:3543.
[55] AMATO A,CAVALLINI E,ZENONI S,F(xiàn)INEZZO L,BEGHELDOM,RUPERTI B,TORNIELLI G B. A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolartransport and flavonoid biosynthesis[J]. Frontiers in PlantScience,2017,7:1979.
[56] CAVALLINI E,MATUS J T,F(xiàn)INEZZO L,ZENONI S,LOYOLA R,GUZZO F,SCHLECHTER R,AGEORGES A,ARCE-JOHNSON P,TORNIELLI G B. The phenylpropanoidpathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine[J]. Plant Physiology,2015,167(4):1448-1470.
[57] ROCK C D. Trans-acting small interfering RNA4:key to nutraceuticalsynthesis in grape development?[J]. Trends in Plant Science,2013,18(11):601-610.
[58] CZEMMEL S,STRACKE R,WEISSHAAR B,CORDON N,HARRIS N N,WALKER A R,ROBINSON S P,BOGS J. Thegrapevine R2R3-MYB transcription factor VvMYBF1 regulatesflavonol synthesis in developing grape berries[J]. Plant Physiology,2009,151(3):1513-1530.
[59] KOYAMAK,IKEDAH,POUDEL P R,GOTO-YAMAMOTO N.Light quality affects flavonoid biosynthesis in young berries ofCabernet Sauvignon grape[J]. Phytochemistry,2012,78:54-64.
[60] CáCERES- MELLA A,TALAVERANO M I,VILLALOBOSGONZáLEZL,RIBALTA-PIZARRO C,PASTENES C. Controlledwater deficit during ripening affects proanthocyanidinsynthesis,concentration and composition in Cabernet Sauvignongrape skins[J]. Plant Physiology and Biochemistry,2017,117:34-41.
[61] 程大偉,陳錦永,顧紅,黃海娜,靳路真,張威遠(yuǎn),張洋,郭西智. GA3 與TDZ 組合對(duì)巨玫瑰葡萄果實(shí)理化指標(biāo)和苦澀味物質(zhì)含量的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),2018,49(5):922-929.
CHENG Dawei,CHEN Jinyong,GU Hong,HUANG Haina,JIN Luzhen,ZHANG Weiyuan,ZHANG Yang,GUO Xizhi. Effectsof GA3 and TDZ combination on bitter and astringent tastecompounds of Vitis vinifera× V. labrusca[J]. Journal of SouthernAgriculture,2018,49(5):922-929.
[62] ALI KHAN S,CHIBON P Y,DE VOS R C H,SCHIPPER B A,WALRAVEN E,BEEKWILDER J,VAN DIJK T,F(xiàn)INKERS R,VISSER R G F,VAN DE WEG E W,BOVY A,CESTARO A,VELASCO R,JACOBSEN E,SCHOUTEN H J. Genetic analysisof metabolites in apple fruits indicates an mQTL hotspot forphenolic compounds on linkage group 16[J]. Journal of ExperimentalBotany,2012,63(8):2895-2908.
[63] CHAGNé D,KRIEGER C,RASSAM M,SULLIVAN M,F(xiàn)RASERJ,ANDRé C,PINDO M,TROGGIO M,GARDINER S E,HENRY R A,ALLAN A C,MCGHIE T K,LAING W A. QTLand candidate gene mapping for polyphenolic composition in applefruit[J]. BMC Plant Biology,2012,12:12.
[64] MCCLURE K A,GONG Y,SONG J,VINQVIST-TYMCHUKM,PALMER L C,F(xiàn)AN L H,BURGHER- MACLELLAN K,ZHANG Z Q,CELTON J M,F(xiàn)ORNEY C F,MIGICOVSKY Z,MYLES S. Genome-wide association studies in apple reveal lociof large effect controlling apple polyphenols[J]. HorticultureResearch,2019,6:107.
[65] GESELLA,YOSHIDA K,TRAN L T,CONSTABEL C P. Characterizationof an apple TT2-type R2R3 MYB transcription factorfunctionally similar to the poplar proanthocyanidin regulatorPtMYB134[J]. Planta,2014,240(3):497-511.
[66] WANG N,QU C Z,JIANG S H,CHEN Z J,XU H F,F(xiàn)ANG HC,SU M Y,ZHANG J,WANG Y C,LIU W J,ZHANG Z Y,LU N L,CHEN X S. The proanthocyanidin- specific transcriptionfactor MdMYBPA1 initiates anthocyanin synthesis underlow- temperature conditions in red- fleshed apples[J]. The PlantJournal,2018,96(1):39-55.
[67] 孫慶國. MdNAC52 調(diào)控蘋果花青苷和原花青素生物合成的機(jī)理[D]. 泰安:山東農(nóng)業(yè)大學(xué),2020.
SUN Qingguo. Mechanism of NAC transcription factor Md-NAC52 regulating biosynthesis of apple anthocyanins and proanthocyanidins[D]. Tai’an:Shandong Agricultural University,2020.
[68] MAO Z L,JIANG H Y,WANG S,WANG Y C,YU L,ZOU Q,LIU W J,JIANG S H,WANG N,ZHANG Z Y,CHEN X S. TheMdHY5- MdWRKY41- MdMYB transcription factor cascaderegulates the anthocyanin and proanthocyanidin biosynthesis inred-fleshed apple[J]. Plant Science,2021,306:110848.
[69] 李志強(qiáng). Mdm-miR858 靶向MdMYB9 和MdMYBPA1 負(fù)調(diào)控紅肉蘋果中花青苷的生物合成[D]. 泰安:山東農(nóng)業(yè)大學(xué),2022.
LI Zhiqiang. Mdm-miR858 targets MdMYB9 and MdMYBPA1 tonegatively regulate anthocyanin biosynthesis in red- fleshed apples[D]. Tai’an:Shandong Agricultural University,2022.
[70] AN X H,TIAN Y,CHEN K Q,LIU X J,LIU D D,XIE X B,CHENG C G,CONG P H,HAO Y J. MdMYB9 and MdMYB11are involved in the regulation of the JA-induced biosynthesis ofanthocyanin and proanthocyanidin in apples[J]. Plant and CellPhysiology,2015,56(4):650-662.
[71] SU M Y,WANG S,LIU W J,YANG M,ZHANG Z Y,WANGN,CHEN X S. MdJa2 participates in the brassinosteroid signalingpathway to regulate the synthesis of anthocyanin and proanthocyanidinin red- fleshed apple[J]. Frontiers in Plant Science,2022,13:830349.
[72] 丁體玉. 桃種質(zhì)資源多酚類物質(zhì)評(píng)價(jià)及其QTL 定位[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2017.
DING Tiyu. The evaluation of polyphenol in peach and its QTL mapping[D]. Beijing:Chinese Academy of Agricultural Sciences,2017.
[73] 盧娟芳,劉盛雨,蘆旺,席萬鵬. 不同類型桃果肉酚類物質(zhì)及抗氧化活性分析[J]. 中國農(nóng)業(yè)科學(xué),2017,50(16):3205-3214.
LU Juanfang,LIU Shengyu,LU Wang,XI Wanpeng. Phenolicprofiles and antioxidant activity of fruit pulp from differenttypes of peaches[J]. Scientia Agricultura Sinica,2017,50(16):3205-3214.
[74] 嚴(yán)娟,蔡志翔,沈志軍,張斌斌,錢巍,俞明亮. 桃3 種顏色果肉中10 種酚類物質(zhì)的測(cè)定及比較[J]. 園藝學(xué)報(bào),2014,41(2):319-328.
YAN Juan,CAI Zhixiang,SHEN Zhijun,ZHANG Binbin,QIANWei,YU Mingliang. Determination and comparison of 10 phenoliccompounds in peach with three types of flesh color[J]. ActaHorticulturae Sinica,2014,41(2):319-328.
[75] RAVAGLIA D,ESPLEY R V,HENRY-KIRK R A,ANDREOTTIC,ZIOSI V,HELLENS R P,COSTA G,ALLAN A C. Transcriptionalregulation of flavonoid biosynthesis in nectarine(Prunus persica) by a set of R2R3 MYB transcription factors[J].BMC Plant Biology,2013,13:68.
[76] ZHOU H,KUI L W,LIAO L,GU C,LU Z Q,ALLAN A C,HAN Y P. Peach MYB7 activates transcription of the proanthocyanidinpathway gene encoding leucoanthocyanidin reductase,but not anthocyanidin reductase[J]. Frontiers in Plant Science,2015,6:908.
[77] ZHOU H,KUI LW,WANG F R,ESPLEY R V,REN F,ZHAOJ B,OGUTU C,HE H P,JIANG Q,ALLAN A C,HAN Y P. Activator-type R2R3-MYB genes induce a repressor- type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation[J]. The New Phytologist,2019,221(4):1919-1934.
[78] CAO K,LI Y,DENG C H,GARDINER S E,ZHU G R,F(xiàn)ANGW C,CHEN C W,WANG X W,WANG L R. Comparative populationgenomics identified genomic regions and candidategenes associated with fruit domestication traits in peach[J].Plant Biotechnology Journal,2019,17(10):1954-1970.
[79] ZHOU W,JIAM Y,ZHANG G C,SUN J,LI Q L,WANG X L,HUA J,LUO S H. Up-regulation of phenylpropanoid biosynthesissystem in peach species by peach aphids produces anthocyaninsthat protect the aphids against UVB and UVC radiation[J].Tree Physiology,2021,41(3):428-443.
[80] 周君,陳宗玲,張瓊,王紅清. 套袋對(duì)桃果實(shí)成熟過程中酚酸類和類黃酮類物質(zhì)積累的影響[J]. 園藝學(xué)報(bào),2009,36(12):1717-1724.
ZHOU Jun,CHEN Zongling,ZHANG Qiong,WANG Hongqing.Effects of bagging on accumulation of phenolic acids and flavonoidsin peach pericarp during fruit maturity[J]. Acta HorticulturaeSinica,2009,36(12):1717-1724.
[81] PLIAKONI E D,NANOS G D,GIL M I. Two-season study ofthe influence of regulated deficit irrigation and reflective mulchon individual and total phenolic compounds of nectarines at harvestand during storage[J]. Journal of Agricultural and FoodChemistry,2010,58(22):11783-11789.
[82] NAJLA S,VERCAMBRE G,GéNARD M. Effects of water deficitand variations of fruit microclimate on peach fruit growthand quality[J]. Plant Stress,2011,49(5):33-38.
[83] TAIRA S,ONO M,MATSUMOTO N. Reduction of persimmonastringency by complex formation between pectin and tannins[J].Postharvest Biology and Technology,1997,12(3):265-271.
[84] 熊宇婷,曾明,王璠,李國權(quán),王彥波,吳美華,杜曉云. 不同脫澀方法對(duì)‘贛方1 號(hào)’柿低溫貯藏及果實(shí)品質(zhì)的影響[J]. 中國南方果樹,2014,43(6):90-93.
XIONG Yuting,ZENG Ming,WANG Fan,LI Guoquan,WANGYanbo,WU Meihua,DU Xiaoyun. Effects of different deastringationmethods on low- temperature storage and fruit quality of‘Ganfang No. 1’persimmon[J]. South China Fruits,2014,43(6):90-93.
[85] 林菲. 柿子保鮮及脫澀技術(shù)研究[D]. 福州:福建農(nóng)林大學(xué),2013.
LIN Fei. Studies on fresh-keeping and postharvest de-astringencyhandles of persimmon fruits[D]. Fuzhou:Fujian Agricultureand Forestry University,2013.
[86] ARNAL L,RIO M A. Removing astringency by carbon dioxideand nitrogen-enriched atmospheres in persimmon fruit cv. Rojobrillante[J]. Journal of Food Science,2003,68(4):1516-1518.
[87] 張鵬,韓雙雙,李春媛,李江闊,薛友林. 澀柿脫澀技術(shù)研究進(jìn)展[J]. 包裝工程,2019,40(11):9-16.
ZHANG Peng,HAN Shuangshuang,LI Chunyuan,LI Jiangkuo,XUE Youlin. Research progress on de- astringent technology ofpersimmon[J]. Packaging Engineering,2019,40(11):9-16.
[88] 程青,梁平卓,李瑩,李寶. 1-甲基環(huán)丙烯和CO2 組合處理抑制柿果實(shí)脫澀軟化的效應(yīng)及其細(xì)胞壁成分的變化[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,20(4):92-99.
CHENG Qing,LIANG Pingzhuo,LI Ying,LI Bao. Effects of 1-MCP on fruit softening and cell wall component variation of persimmonvariety treated with CO2[J]. Journal of China AgriculturalUniversity,2015,20(4):92-99.
[89] 蒲富慎. 果樹種質(zhì)資源描述符:記載項(xiàng)目及評(píng)價(jià)標(biāo)準(zhǔn)[M]. 北京:農(nóng)業(yè)出版社,1990.
PU Fushen. Descriptors of fruit tree germplasm resources:Recorditems and evaluation criteria[M]. Bingjing:China AgriculturePress,1990.
[90] 由美千惠,秦智偉,辛明,周秀艷. 黃瓜種質(zhì)資源食味性感官品質(zhì)評(píng)價(jià)[J]. 中國瓜菜,2021,34(12):101-106.
YOU Meiqianhui,QIN Zhiwei,XIN Ming,ZHOU Xiuyan. Sensoryevaluation of taste of cucumber germplasm resources[J].China Cucurbits and Vegetables,2021,34(12):101-106.
[91] MARTíNEZ G,REGENTE M,JACOBI S,DEL RIO M,PINEDOM,DE LA CANAL L. Chlorogenic acid is a fungicide activeagainst phytopathogenic fungi[J]. Pesticide Biochemistryand Physiology,2017,140:30-35.
[92] GOURLAY G,HAWKINS B J,ALBERT A,SCHNITZLER J P,PETER CONSTABEL C. Condensed tannins as antioxidantsthat protect poplar against oxidative stress from drought andUV-B[J]. Plant,Cell amp; Environment,2022,45(2):362-377.
[93] HEO H J,LEE C Y. Epicatechin and catechin in cocoa inhibitamyloid beta protein induced apoptosis[J]. Journal of Agriculturaland Food Chemistry,2005,53(5):1445-1448.
[94] VIZZOTTO M,PORTER W,BYRNE D,CISNEROS-ZEVALLOSL. Polyphenols of selected peach and plum genotypes reducecell viability and inhibit proliferation of breast cancer cellswhile not affecting normal cells[J]. Food Chemistry,2014,164:363-370.