





3 結 論
泡序圖有許多吸引研究者的性質.本文證明了當n3時,κ4(Bn)=n-2,即,在Bn中有至少(n-2)棵內部不交的斯坦納樹連接任意4個頂點.需要說明的是,那些內部不交的斯坦納樹是通過構造得到的,因此不是唯一存在的,Bn中還可能存在其他形式的內部不交斯坦納樹.隨后,作者會尋求Bn的廣義k-連通度中更一般的k.
參 考 文 獻
[1] "WHITNEY H.Congruent graphs and the connectivity of graphs[J].American Journal of Mathematics,1932,54(1):150-168.
[2]HARARY F.Conditional connectivity[J].Networks,1983,13(3):347-357.
[3]FBREGA J,FIOL M A.On the extraconnectivity of grphs[J].Discrete Mathematics,1996,155:49-57.
[4]LATIFI S,HEGDE M,NARAGHI-POUR M.Conditional connectivity measures for large multiprocessor systems[J].IEEE Transactions on Computers,1994,43(2):218-222.
[5]MENGER K.Zur allgemeinen kurventheorie[J].Fundamenta Mathematicae,1927,10:96-115.
[6]LIN C-K,ZHANG L,FAN J,et al.Structure connectivity and substructure connectivity of hypercubes[J].Theoretical Computer Science,2016,634:97-107.
[7]LI M,ZHANG S,LI R,et al.Structure fault tolerance of k-ary n-cube networks[J].Theoretical Computer Science,2019,795:213-218.
[8]XU M,JING J.The connectivity and super connectivity of bubble-sort graph[J].Acta Mathematicae Applicatae Sinica-Chinese,2012,35(5):789-794.
[9]WANG S,WANG Z,WANG M.The 2-extra connectivity and 2-extra diagnosability of bubble-sort star graph networks[J].The Computer Journal,2016,59(12):1839-1856.
[10]WANG Y,WANG S.The 3-good-neighbor connectivity of modified bubble-sort graphs[J].Mathematical Problems in Engineering,2020,2020:1-18.
[11]王世英,楊婕,馬曉蕾.修正泡型圖的條件匹配排除[J].河南師范大學學報(自然科學版),2021,49(1):1-9.
WANG S Y,YANG J,MA X L.Conditional matching preclusion of the modified bubble-sort graph[J].Journal of Henan Normal University(Natural Science Edition),2021,49(1):1-9.
[12]CHARTRAND G,KAPOOR S F,LESNIAK L,LICK D R.Generalized connectivity in graphs[J].Bulletin Bombay Math Colloq,1984,2:1-6.
[13]LI S,LI X,ZHOU W.Sharp bounds for the generalized connectivity κ3(G)[J].Discrete Mathematics,2010,310:2147-2163.
[14]ZHAO S,HAO R,WU J.The generalized 3-connectivity of some regular networks[J].The Journal of Parallel and Distributed Computing,2019,133:18-20.
[15]LI S,TU J,YU C.The generalized 3-connectivity of star graphs and bubble-sort graphs[J].Applied Mathematics and Computation,2016,274:41-46.
[16]LI S,SHI Y,TU J.The generalized 3-connectivity of Cayley graphs on symmetric groups generated by trees and cycles[J].Graphs and Combinatorics,2017,33:1195-1209.
[17]LIN S,ZHANG Q.The generalized 4-connectivity of hypercubes[J].Discrete Applied Mathematics,2017,220:60-67.
[18]ZHAO S,HAO R,WU J.The generalized 4-connectivity of hierarchical cubic networks[J].Discrete Applied Mathematics,2021,289:194-206.
[19]ZHAO S,HAO R.The generalized 4-connectivity of exchanged hypercubes[J].Applied Mathematics and Computation,2019,347:342-353.
[20]BONDY J A.Murty,Graph Theory[M].New York:Springer,2007.
[21]XU M.The connectivity and super connectivity of bubble-sort graph[J].Acta Mathematicae Applicatae Sinica-Chinese,2012,35:789-794.
[22]CHENG E,LIPTK L.Linearly many faults in Cayley graphs generated by transposition trees[J].Information Sciences,2007,177:4877-4882.
[23]LI S.Some Topics on Generalized Connectivity of Graphs[D].Tianjing:Nankai University,2012.
The generalized 4-connectivity of bubble-sort graphs
Wang Yanling1, Feng Wei2
(1. College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China;
2. College of Mathematics and Physics, Inner Mongolia Minzu University, Tongliao 028043, China)
Abstract: Let SV(G) be a vertex set and |S|k for 2kn, a tree T is called an S-Steiner tree if T connects S. Two S-Steiner trees T1 and T2 are internally disjoint if E(T1)∩E(T2)= and V(T1)∩V(T2)=S. Let κκG(S) be the maximum number of the internally disjoint S-Steiner trees. κk(G)=min{κG(S)∶SV(G), |S|=k} is defined as the generalized k-connectivity of G. Obviously, when |S|=2, the generality 2-connectivity κ2(G) is the classical connectivity κ(G). Then the generality connectivity is a generalization of the classical connectivity. In this paper, we focus on the generality 4-connectivity κ4(Bn) of the bubble-sort graph Bn and get κ4(Bn)=n-2 when n3.
Keywords: generalized 4-connectivity; internally disjoint; bubble-sort graphs; paths
[責任編校 陳留院 趙曉華]