






摘 要:肺結核和COVID-19都是由病原體感染肺部引起的呼吸道傳染病,并呈現咳嗽、發燒或者呼吸困難等部分相似的癥狀.借助動力學理論建立了一類肺結核和COVID-19共發感染的傳播動力學模型,討論了COVID-19對肺結核控制的可能影響.理論結果表明,除無病平衡點P0外,模型還存在多個地方病平衡點P1,P2和P3,并且每個平衡點在一定條件下都是全局漸近穩定的.數值模擬清晰地展示了COVID-19在人群內持續傳播的可能性大于肺結核.
關鍵詞:COVID-19;肺結核;共發感染;穩定性
中圖分類號:O175文獻標志碼:A
肺結核是由結核分枝桿菌感染肺部引起的一種古老的呼吸道傳染病,直到今天仍然是一個重要的全球公共衛生問題[1-3].據估計[4],全球已有四分之一的人口是結核分枝桿菌潛伏感染者.2021年全球結核報告顯示[5],2020年全球新發結核病患者987萬,死亡人數超過100萬.2020年全球爆發的COVID-19是由新型冠狀病毒感染肺部引起的急性呼吸道傳染病,截至2022年1月7日,全球已報告COVID-19確診病例2 900萬余例,死亡病例超過540萬[6].
肺結核和COVID-19都影響人類的呼吸系統,主要是肺部,并呈現咳嗽,發燒和呼吸困難等類似的癥狀[7].目前已經有不少研究來討論、預測或模擬肺結核與COVID-19之間的相互作用[8-13],這些研究主要從醫學或者公共衛生的角度來探討COVID-19全球疫情暴發對肺結核防控的影響,包括疫苗接種[8]、社區或者家庭內傳播[10]等.然而,利用數學模型來定性討論COVID-19和肺結核相互作用的研究比較少[14-16].
本文將通過建立一類數學模型來分析COVID-19對肺結核傳播的影響.首先,在第一部分給出建立的模型,并討論模型解的非負性和有界性等系統的適定性;接著,在第二部分討論模型平衡點的存在性和穩定性,并給出肺結核和COVID-19在人群內傳播、消失的條件.最后,對得到的結果進行總結和討論.
1 模型
基于肺結核的傳播機理,選用經典的SEIR型倉室模型來描述其在人群中的傳播[17].由于肺結核和COVID-19這兩類疾病在臨床癥狀上具有一定的相似性,考慮利用SEIR模型來研究這兩類疾病在人群中共發感染的傳播模式.通過SEIR模型,想要討論分析COVID-19的流行是否會對肺結核的傳播產生影響,肺結核是否會對COVID-19在人群中的傳播產生影響,以及兩種疾病之間的相互作用是怎樣的.基于此,將整個人群劃分為易感者(S)、肺結核潛伏感染者(E)、肺結核病人(I1)、COVID-19病人(I2)、恢復者(T),共5類,并做以下假設:
(1)肺結核潛伏感染者由于沒有癥狀不易被發現,有被感染成為COVID-19病人的可能;
(2)相較于肺結核COVID-19病程較短,不考慮存在COVID-19潛伏感染者,即一旦感染COVID-19就成為COVID-19病人;
(3)肺結核病人與COVID-19病人之間不會發生交叉感染;
(4)不考慮這兩類傳染病的復發問題.
以經典的SEIR倉室模型為基礎,可將兩類傳染病的發展過程表示為如下的倉室框圖(圖1).
3 討論與結論
由于肺結核和COVID-19都是由病原體感染肺部引起的呼吸道傳染病,并且這兩類傳染病有部分相似的癥狀,因此COVID-19疫情暴發后對肺結核的防控帶來極大的挑戰[10].本文通過建立一類肺結核和COVID-19合并感染的傳染病動力學模型討論了COVID-19傳播對肺結核防控的影響.首先,得到了無病平衡點P0、僅有肺結核在人群內傳播的地方病平衡點P1、僅有COVID-19在人群內傳播的地方病平衡點P2和兩類病同時在人群內傳播的地方病平衡點P3.接著,分別給出了僅有肺結核或者COVID-19在人群內傳播與否的閾值R1和R2,并利用R1和R2討論了兩類病同時在人群內傳播與否的條件.最后,利用構造Lyapunov函數的方法討論了各個平衡點的全局穩定性.研究結果表明:當R11,R21時,無病平衡點P0是全局漸近穩定的,這說明控制R1和R2都不超過1便可以使得這兩類疾病在人群內消失;一旦R1>1或者R2>1,則肺結核或者COVID-19至少有一類疾病會在人群內傳播.也就是,如果R2>M>1,或者R2>1>M,則僅有COVID-19會在人群內傳播;如果M>R1>1,則僅有肺結核會在人群內傳播;如果R1>M>R2>1,則肺結核和COVID-19都會在人群內傳播;這里,M>1(=1,<1)等價于R1>R2(=R2,<R2).
事實上,當M1時,由于αD+α×β1D+μ1+γ1β2D+μ2+γ2,意味著COVID-19在人群內的傳染率高于肺結核的傳染率,即,COVID-19會在人群內持續傳播.而在M>1的情況下,隨著M的減少,肺結核在人群內的傳播會逐漸減弱,COVID-19在人群內的傳播會逐步增強,最終導致COVID-19在人群內傳播.
參 考 文 獻
[1] "COMAS I,COSCOLLA M,LUO T,et al.Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans[J].Nature Genetics,2013(45):1176-1182.
[2]KYU H H,MADDISON E R,HENRY N J,et al.The global burden of tuberculosis:Results from the Global Burden of Disease Study 2015[J].The Lancet Infectious Diseases,2018(18):261-284.
[3]MATTEELLI A,SULIS G,CAPONE S,et al.Tuberculosis elimination and the challenge of latent tuberculosis[J].La Presse Médicale,2017,46(2):e13-e21.
[4]HOUBEN R M,DODD P J.The global burden of latent tuberculosis infection:A re-estimation using mathematical modelling[J].Public Library of Science Medicine,2016,9(13):e1002152.
[5]World Health Organization.Global Tuberculosis Report 2021[R].World Health Organization:Switzerland,2021.
[6]World Health Organization.WHO Coronavirus (COVID-19) Dashboard,2021[EB/OL].[2022-01-01].https://covid19.who.int/.
[7]YANG J,ZHENG Y,GOU X,et al.Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis[J].International Journal of Infectious Diseases,2020,94(1):91-95.
[8]KEFYALEW A A,KINLEY W,ARCHIE C A C.Impact of the COVID-19 pandemic on tuberculosis control:An overview[J].Tropical Medicine and Infectious Disease,2020,5(123):1-8.
[9]MCQUAID C F,MCCREESH N,READ J M,et al.The potential impact of COVID-19 related disruption on tuberculosis burden[J].European Respiratory Journal,2020,56(2):2001718.
[10]HUANG F,XIA Y,CHEN H,et al.The impact of the COVID-19 epidemic on tuberculosis control in China[J].The Lancet Regional Health - Western Pacific,2020,3:100032.
[11]MCQUAID C F,VASSALL A,COHEN T,et al.The impact of COVID-19 on TB: a review of the data[J].The International Journal of Tuberculosis and Lung Disease,2021,25(6):436-446.
[12]AZNAR M L,ESPINOAS-PEREIRO J,SABORIT N,et al.Impact of the COVID-19 pandemic on tuberculosis management in Spain[J].International Journal of Infectious Diseases,2021,108:300-305.
[13]VISCAAB D,ONGCD C W M,TIBERI S,et al.Tuberculosis and COVID-19 interaction:A review of biological,clinical and public health effects[J].Pulmonology,2021,27(2):151-165.
[14]OMAME A,ABBAS M,ONYENEGECHA C P.A fractional-order model for COVID-19 and Tuberculosis co-infection using Atangana-Baleanu derivative[J].Chaos,Solitons amp; Fractals,2021,153:111486.
[15]MARIMUTHU Y,NAGAPPA B,SHARMA N,et al.COVID-19 and tuberculosis:a mathematical model based forecasting in Delhi,India[J].Indian Journal of Tuberculosis,2020,67(2):177-181.
[16]FATIMA B,ZAMAN G.Co-infection of Middle Eastern respiratory syndrome coronavirus and pulmonary tuberculosis[J].Chaos,Solitons amp; Fractals,2020,140:110205.
[17]DAS K,BSN MURTHY,SAMAD S A,et al.Mathematical Transmission Analysis of SEIR Tuberculosis Disease Model[J].Sensors International,2021,2(2):100120.
[18]馬知恩,周義倉,李承治.常微分方程定性與穩定性方法[M].2版.北京:科學出版社,2015.
[19]LI M Y,GRAEF J R,WANG L,et al.Global dynamics of a SEIR model with varying total population size[J].Mathematical biosciences,1999,160(2):191-213.
Modeling and analysis of tuberculosis and co-infection with COVID-19
Liu Qinghua, Cao Hui, Li Haiyan
(School of Mathematics amp; Data Science, Shaanxi University of Science and Technology, Xi'an 710021, China)
Abstract: Both tuberculosis and COVID-19 are respiratory infectious diseases caused by pathogens infecting the lungs with partially similar symptoms such as coughing, fever or difficulty breathing. In this paper, a transmission dynamic model of tuberculosis and co-infection with COVID-19 was established by using dynamic theory, and the possible impact of COVID-19 on tuberculosis control was discussed. The research results show that in addition to the disease-free equilibrium P0, there are several endemic equilibria P1, P2 and P3 for the model, and each equilibrium point is globally asymptotically stability under certain conditions. Finally numerical simulations clearly show that the possibility of sustained transmission of COVID-19 in the population is higher than that of tuberculosis.
Keywords: COVID-19; tuberculosis; co-infection; stability
[責任編校 陳留院 趙曉華]
收稿日期:2022-01-03;修回日期:2022-10-16.
基金項目:國家自然科學基金(12071268;11971281);陜西省自然科學基金青年項目(2020JQ-700);陜西省教育廳項目(20JK0546).
作者簡介:劉清華(1999-),女,河南許昌人,陜西科技大學碩士研究生,研究方向為肺結核與COVID-19共發感染動力學建模,E-mail:200911032@sust.edu.cn.
通信作者:曹慧(1981-),女,陜西科技大學副教授,E-mail:caohui@sust.edu.cn;李海燕(1986-),女,陜西科技大學講師,博士,E-mail:lihaiyan@sust.edu.cn.