






摘 要:主要研究了具有k+1階非線性項的廣義Camassa-Holm方程的解的性質(zhì).一方面,通過運用合適的容許權(quán)函數(shù),證明了該方程的解在加權(quán)空間Lp中的持續(xù)性.另一方面,也研究了當x→+∞和x→-∞時解的漸近性質(zhì).
關鍵詞:廣義Camassa-Holm方程;持續(xù)性;加權(quán)空間
中圖分類號:O175.29文獻標志碼:A
本文研究下面廣義Camassa-Holm方程在加權(quán)Lp空間中的持續(xù)性.
參 考 文 獻
[1] "FUCHESSTEINER B,F(xiàn)OKAS A S.Sympletic structures,their Bcklund transformations and herechitary symmetries[J].Physica D,1981,4(1):47-66.
[2]CAMASSA R,HOLM D D.An integrable shallow water equation with peaked solitons[J].Phys Rev Lett,1993,71(11):1661-1664.
[3]CONSTANTIN A.On the Cauchy problem for the periodic Camassa-Holm equation[J].J Diff Eqns,1997,141(2):218-235.
[4]CONSTANTIN A,ESCHER J.Global existence and blow-up for a shallow water equation[J].Ann Scuola Norm Sup Pisa Cl Sci,1998,26(4):303-328.
[5]CONSTANTIN A,ESCHER J.Well-posedness,global existence,and blow-up phenomena for a periodic quasi-linear hyperbolic equation[J].Commun Pure Appl Math,1998,51(5):475-504.
[6]LI Y A,OLVER P J.Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation[J].J Diff Eqns,2000,162(1):27-63.
[7]BYERS P.Existence time for the Camassa-Holm equation and the critical Sobolev index[J].Indiana Univ Math J,2006:941-954.
[8]WU S Y,YIN Z Y.Blow up,blow up rate and decay of the solution of the weakly dissipative Camassa-Holm equation[J].J Math Phys,2006,47(1):013504.
[9]WU S Y,YIN Z Y.Global existence and blow up phenomena for the weakly dissipative Camassa-Holm equation[J].J Diff Eqns,2009,246(11):4309-4321.
[10]BRANDOLESE L.Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces[J].Int Math Res Notices,2012,2012(22):5161-5181.
[11]WU Y,ZHAO P.A Note on the generalized Camassa-Holm equation[J].J Funct Space,2014,2014:1-12.
[12]ZHAO Y Y,LI Y S,YAN W.Local well-posedness and persistence properties for the generalized Novikov equation[J].Discr Contin Dyn Syst Ser A,2014,34(2):803-820.
[13]ZHAO Y Y,LI Y S,YAN W.The global weak solutions to the Cauchy problem of the generalized Novikov equation[J].Appl Anal,2015,94(7):1334-1354.
[14]WEI L,ZENG Q.Persistent Decay of Solutions to the k-abc Equation in Weighted Lp Spaces[J].J Dyn Diff Eqns, 2020,32(1):219-232.
Persistence properties for a generalized Camassa-Holm equation in weighted spaces
Li Yongsheng1, Guo Huijing1, Zhao Yongye2, Yang Meiling3
(1. School of Mathematics, South China" University of Technology, Guangzhou 510640, China; 2. Department of Basic Courses,
Guangzhou Maritime University, Guangzhou 510725, China; 3. School of Computer Science and Technology,
Dongguan University of Technology, Dongguan 523808, China)
Abstract: In this paper, we study the generalized Camassa-Holm equation with (k+1)-degree nonlinearities. By use of moderate weight functions, we prove some persistence results for the solution to the equation in weighted Lp spaces. We also establish the asymptotic profiles of the solution as" x→+∞ and x→-∞.
Keywords: generalized Camassa-Holm equations; persistence properties; weighted spaces
[責任編校 陳留院 趙曉華]