[摘要]"乳腺癌是全球范圍內的公共衛生問題之一,現有治療方案仍無法解決乳腺癌患者的生存和預后等問題。研究發現核因子κB等信號通路在乳腺癌的發生發展過程中發揮重要作用。本文對多條信號通路在乳腺癌中作用機制的研究進展進行綜述。
[關鍵詞]"乳腺癌;信號通路;作用機制
[中圖分類號]"R737.9""""""[文獻標識碼]"A""""[DOI]"10.3969/j.issn.1673-9701.2024.07.026
乳腺癌是女性常見腫瘤之一,在女性腫瘤相關死因中居第2位[1]。乳腺癌是一種復雜的異質性疾病,根據組織學特征可將其分為雌激素受體(estrogen"receptor,ER)陽性乳腺癌、人表皮生長因子受體2(human"epidermal"growth"factor"receptor"2,HER2)陽性乳腺癌和三陰性乳腺癌[2]。內分泌治療是激素反應性乳腺癌的主要治療方法,包括使用選擇性ER調節劑、選擇性ER降解劑和芳香酶抑制劑[3]。靶向ER和HER2的藥物是乳腺癌最廣泛的治療方法[4]。化療、激素類藥物和靶向治療藥物可降低乳腺癌的死亡率,但確定從此類治療中獲益的患者及患者可能會遭受到的藥物毒性與耐藥等問題仍是極具挑戰的難題。隨著醫療成本的升高和新的靶向治療藥物的引入,生物標志物的探索與應用已成為輔助乳腺癌診斷、治療、預后及監測治療期間和治療后疾病的重要方法[5]。了解乳腺癌轉移和化療耐藥性的機制對開發基于分子靶點的乳腺癌治療方法至關重要。本文綜述與乳腺癌發生發展密切相關的生物標志物和信號通路的研究進展,并探討其在乳腺癌臨床診療中的可行性。
1""核因子κB信號通路
核因子κB(nuclear"factor-κB,NF-κB)是一組特異性轉錄因子,不僅可調控細胞增殖、凋亡相關基因的轉錄,還可調控炎癥和次級免疫反應相關基因的轉錄和表達,在腫瘤生物學中起關鍵作用[6]。NF-κB家族成員包括NF-κB1(p105/p50)、NF-κB2(p100/p52)、RelA(p65)、RelB和c-REL[7]。NF-κB是包括乳腺在內的幾種上皮組織正常器官發生所必需的,在乳腺癌細胞系和原發性人乳腺癌組織中均可檢測到NF-κB"DNA結合活性的異常升高[8]。研究表明,當NF-κB經典信號通路被特異性阻斷時,模型小鼠表現出嚴重的泌乳缺陷[9]。
NF-κB可誘導的基因包括尿激酶型纖溶酶原激活物、白細胞介素(interleukin,IL)-6、IL-8、巨噬細胞炎癥蛋白-2、細胞間黏附分子-1、谷胱甘肽S-轉移酶、細胞凋亡抑制蛋白2、腫瘤壞死因子受體相關因子1、含銅與鋅超氧化物歧化酶、含錳超氧化物歧化酶等[10]。NF-κB可誘導基因超過180個,這些基因在乳腺癌等腫瘤的發生、發展、轉移和化療耐藥性中扮演重要角色[11-12]。研究表明致癌基因c-Myc是NF-κB信號通路的作用靶點,其在30%的乳腺癌中過表達[13]。NF-κB可促進細胞周期蛋白(cyclin)D1的表達,而c-Myc可促進cyclin"A和cyclin"E的表達,從而加速細胞增殖[14]。NF-κB還可調節上皮間質轉化,這是乳腺癌進展的關鍵過程之一[15]。NF-κB信號通路的經典和替代途徑的激活是促進上皮間質轉化相關基因表達、刺激腫瘤起始細胞自我更新和增殖的先決條件[16]。綜上,NF-κB在乳腺癌的發病機制中發揮重要作用,NF-κB的激活與促進乳腺癌細胞的生長有關,而抑制NF-κB信號通路可成為乳腺癌治療的有效途徑之一。
2""PI3K/Akt/mTOR信號通路
磷脂酰肌醇3激酶(phosphoinositide"3-kinase,PI3K)/蛋白激酶B(protein"kinase"B,PKB,又稱Akt)/哺乳動物雷帕霉素靶蛋白(mammalian"target"of"rapamycin,mTOR)是細胞內主要的信號通路,該信號通路可介導細胞內營養代謝、激素分泌和生長因子的相關功能。PI3K/Akt/mTOR信號通路在多種腫瘤的細胞生長和增殖中發揮重要作用,是乳腺癌最常見的異常基因組之一。
PI3K是該級聯反應中導致腫瘤細胞生長的關鍵分子[17]。PI3K是由一個調節亞基p85和催化亞基p110組成的異源二聚體,其中催化亞基存在4種亞型(α、β、δ和γ)[18]。PI3K/Akt/mTOR信號通路通過受體酪氨酸激酶而被激活,反向觸發PI3K的激活,隨后磷酸化Akt和哺乳動物雷帕霉素靶蛋白復合物(mammalian"target"of"rapamycin"complex,mTORC)1[19]。Akt有3個亞型,包括Akt1、Akt2和Akt3;其在葡萄糖代謝、細胞存活、細胞生長和細胞增殖中發揮核心作用[20]。mTOR由mTORC1和mTORC2兩種蛋白質復合物組成。mTORC1是一種對雷帕霉素和生長因子等營養物質敏感的多蛋白復合物,位于Akt下游[21]。mTORC1可刺激細胞的生長和細胞周期的進展,參與應激、氧化等生化反應過程;mTORC2也對生長因子敏感,但對營養物質和雷帕霉素并不敏感,可調節細胞骨架、細胞代謝和細胞存活[22-23]。約60%的乳腺癌存在PI3K/Akt/mTOR信號通路過度激活的情況[24]。目前,PI3K抑制劑alpelisib和mTOR抑制劑依維莫司已被美國食品藥品監督管理局和歐洲藥品管理局批準用于晚期ER陽性乳腺癌的治療[25]。新一代Akt抑制劑capivasertib及高選擇性ATP競爭性mTOR激酶抑制劑sapanisertib和西羅莫司仍有待廣泛臨床評估[26]。
3""JAK/STAT信號通路
Janus激酶(Janus"kinase,JAK)是一類非受體酪氨酸激酶,是細胞因子和生長激素信號傳導的介質。激活的JAK可使信號轉導及轉錄活化因子(signal"transducer"and"activator"of"transcription,STAT)磷酸化,導致核易位并調節細胞增殖、分化、凋亡相關基因的轉錄[27]。JAK/STAT信號通路也可促進腫瘤的生長,誘導炎癥[28]。JAK家族由JAK1、JAK2、JAK3和TYK2共4個非受體蛋白酪氨酸激酶組成,其中JAK1、JAK2和TYK2在哺乳動物中廣泛表達。JAK一旦被細胞因子激活,便可作為STAT等信號分子的對接位點;被激活的STAT從細胞質轉移到細胞核,促進其他基因的轉錄[29]。
研究發現,STAT1、STAT2、STAT3、STAT4、STAT5a、STAT5b和STAT6在乳腺癌細胞系或乳腺癌組織中表達異常[30]。STAT1和STAT2有助于免疫應答相關基因的激活[31]。研究證實原發性乳腺腫瘤中STAT3水平升高;與正常乳腺組織相比,惡性乳腺癌細胞核中的STAT3水平明顯升高[32]。此外,STAT5在乳腺中首次被描述為可促進乳腺發育的特異性基因,STAT5a的核表達與腫瘤分級呈顯著正相關;STAT5a的核定位在人乳腺癌中亦顯著增加[33]。另有研究表明,STAT的異常表達與ER陽性乳腺癌、孕激素受體陽性乳腺癌的不良預后有關[34];與化療敏感的乳腺癌細胞系MCF7比較,MCF7耐藥株細胞中被JAK/STAT信號通路和蛋白激酶C信號通路磷酸化的多肽具有廣泛的激酶活性[35]。綜上,JAK/STAT信號通路通過多基因相互作用對轉錄的異常激活、腫瘤的發生發展及乳腺癌的化療耐藥性產生影響。
4""Notch信號通路
Notch信號通路存在于脊椎動物和無脊椎動物中,其在物種進化過程中高度保守,參與調控細胞的增殖、遷移、凋亡,并參與調節組織器官分化和血管形成等[36]。在哺乳動物中,Notch信號通路的關鍵組成部分是4個Notch受體、5個Notch配體和轉錄因子CSL"DNA結合蛋白[37]。與其他信號通路相比,Notch信號通路的結構相對簡單,激活過程中無第二信使參與,因此不會和其他信號通路一樣產生級聯擴增[38]。
Notch的不當激活可導致細胞過度增殖,甚至誘發癌癥,其在多種癌癥中發揮促腫瘤的作用。既往研究表明,乳腺腫瘤是第一個被發現與Notch信號通路相關的實體腫瘤;也有研究認為Notch信號通路是乳腺癌的三大“罪魁禍首”之一[39]。Notch受體的過表達與三陰性乳腺癌的侵襲性、轉移性和耐藥性高度相關[40]。Notch1的過表達與患者的不良預后、乳腺癌進展及乳腺導管原位癌向侵襲性乳腺癌的轉變相關;Notch2的突變可增加乳腺癌的發生率,且突變率與HER2陽性乳腺癌的進展呈正相關;Notch3的過表達與乳腺癌的侵襲和遠處轉移相關,也與HER2陰性乳腺癌的進展相關[40]。55.6%的三陰性乳腺癌患者中Notch4過表達,而45.8%的HER2陽性乳腺癌患者和25.5%的luminal型乳腺癌患者中也同樣出現Notch4的異常表達[40]。DLL1、DLL3、DLL4、Jagged1和Jagged2都是Notch受體的配體[41]。表達DLL1的乳腺癌干細胞可通過NF-κB信號通路驅動乳腺癌的化療耐藥,而DLL3的高表達與侵襲性乳腺癌患者的預后不良和免疫浸潤相關[42]。綜上,Notch信號通路抑制劑可成為乳腺癌免疫治療的新靶點。
5""轉化生長因子-β信號通路
轉化生長因子-β(transforming"growth"factor-β,TGF-β)屬于生長因子多肽超家族,包括激活素、抑制素和骨形態發生蛋白(bone"morphogenetic"protein,BMP),其可調節多種細胞行為,包括細胞增殖、細胞分化、細胞凋亡和基質積累等[43]。經典TGF-β信號通路涉及TGF-β結合TGF-βⅡ型受體、TGF-βⅠ型受體招募、TGF-βⅡ型受體激酶磷酸化及隨后的受體調節Smad(receptor-regulated"Smad,R-Smad)蛋白磷酸化[44]。BMP發出特異性BMPⅠ型和Ⅱ型受體信號,并刺激R-Smad1、5和8的激活;磷酸化的Smad與共同的介質(co-)Smad4形成異質復合物,積聚到細胞核中;Smad復合物與轉錄因子、共激活因子和共抑制因子相互作用,參與靶基因表達的調控[45]。除典型的TGF-β/Smad信號通路外,TGF-β還可直接激活非Smad信號通路,如絲裂原活化蛋白激酶等[46]。
TGF-β是一種腫瘤抑制因子,其可抑制細胞生長并促進細胞凋亡。TGF-β通過增強晚期腫瘤細胞的運動性和侵襲性促進腫瘤轉移;在乳腺癌中,TGF-β可促進小鼠模型腫瘤細胞的轉移[47]。腫瘤微環境中的TGF-β是乳腺癌細胞發生肺轉移的主要因素[48]。在乳腺癌骨轉移過程中,TGF-β可刺激腫瘤細胞生成甲狀旁腺激素相關蛋白等細胞因子,從而形成惡性循環[49]。TGF-β還可通過誘導上皮間質轉化,促進腫瘤細胞的侵襲和擴散,增強血管生成,介導腫瘤細胞的免疫逃逸,從而促進腫瘤進展[50]。另外,TGF-β還可影響腫瘤的微環境,刺激腫瘤細胞的局部運動和存活[51]。
6""Wnt信號通路
Wnt信號通路是一種高度保守的信號通路,在調控胚胎和器官發育及腫瘤進展中起關鍵作用[52]。Wnt信號通路因其復雜性而被細分為不同的分支,包括經典Wnt/β-聯蛋白(β-catenin)途徑及非經典不依賴β-catenin途徑[53];后者被進一步分為兩個分支,即平面細胞極性信號通路和Wnt/Ca+信號通路[53]。β-catenin、T細胞因子、淋巴增強因子參與經典Wnt/"β-catenin信號通路的調控,可調節乳腺癌的細胞增殖并維持“干性”特征。當Wnt與受體復合物結合后,磷酸化的低密度脂蛋白受體相關蛋白5/6受體可直接與軸蛋白相互作用,卷曲蛋白與軸蛋白結合蛋白結合生成散亂蛋白,散亂蛋白招募軸蛋白分解β-catenin降解復合物,導致降解復合物失活,從而抑制β-catenin的降解[54]。因此,β-catenin在細胞質中積累并進入細胞核,在細胞核中與T細胞因子/淋巴樣增強結合因子結合,從而激活靶基因[55]。越來越多的證據表明,平面細胞極性和Wnt/Ca2+信號通路可介導乳腺癌細胞的轉移[56]。
全基因組測序和基因表達譜分析表明,Wnt信號通路主要參與乳腺癌的細胞增殖和轉移過程[57]。Wnt信號通路在乳腺癌免疫微環境調節、干細胞維持、治療耐藥性、表型形成等方面也發揮重要作用[58]。Wnt蛋白在乳腺中的致癌作用已在小鼠模型中被充分證實:細胞質中的β-catenin水平升高,細胞核中的β-catenin累積異常等[59]。越來越多的Wnt靶向小分子藥物和生物制劑已進入乳腺癌的臨床試驗階段,相信在不久的將來,靶向Wnt信號通路的相關治療方案將問世于臨床治療。
7""小結與展望
對腫瘤發生發展過程中相關信號通路進行深度研究有助于制訂靶向的患者群體臨床試驗方案,患者可從特定的治療中獲益。目前,他莫昔芬、米非司酮、曲妥珠單抗、帕妥珠單抗、ribociclib、阿貝西利等藥物表現出一定的治療效果,但也有較強的不良反應,仍需更多的臨床研究進一步探索。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] DESANTIS"C,"SIEGEL"R,"BANDI"P,"et"al."Breast"cancer"statistics,"2011[J]."CA"Cancer"J"Clin,"2011,"61(6):"409–418.
[2] TSANG"J"Y"S,"TSE"G"M."Molecular"classification"of"breast"cancer[J]."Adv"Anat"Pathol,"2020,"27(1):"27–35.
[3] YU"T,"CHENG"H,"DING"Z,"et"al."GPER"mediates"decreased"chemosensitivity"via"regulation"of"ABCG2"expression"and"localization"in"tamoxifen-resistant"breast"cancer"cells[J]."Mol"Cell"Endocrinol,"2020,"506:"110762.
[4] JIAXIN"C,"JINMEI"Z,"HUIQIANG"Z,"et"al."Conversion"of"ER,"PR,"HER2"and"Ki-67"and"prognosis"in"breast"cancer"metastases"to"the"brain[J]."Front"Neurol,"2022,"13:"1002173.
[5] BARZAMAN"K,"KARAMI"J,"ZAREI"Z,"et"al."Breast"cancer:"Biology,"biomarkers,"and"treatments[J]."Int"Immunopharmacol,"2020,"84:"106535.
[6] ZHANG"Q,"LENARDO"M"J,"BALTIMORE"D."30"years"of"NF-κB:"A"blossoming"of"relevance"to"human"pathobiology[J]."Cell,"2017,"168(1-2):"37–57.
[7] ALHARBI"K"S,"FULORIA"N"K,"FULORIA"S,"et"al."Nuclear"factor-kappa"B"and"its"role"in"inflammatory"lung"disease[J]."Chem"Biol"Interact,"2021,"345:"109568.
[8] ZHANG"M,"LIU"Z"Z,"AOSHIMA"K,"et"al."CECR2"drives"breast"cancer"metastasis"by"promoting"NF-κB"signaling"and"macrophage-mediated"immune"suppression[J]."Sci"Transl"Med,"2022,"14(630):"eabf5473.
[9] DOLCET"X,"LLOBET"D,"PALLARES"J,"et"al."NF-κB"in"development"and"progression"of"human"cancer[J]."Virchows"Arch,"2005,"446(5):"475–482.
[10] PATEL"N"M,"NOZAKI"S,"SHORTLE"N"H,"et"al."Paclitaxel"sensitivity"of"breast"cancer"cells"with"constitutively"active"NF-kappaB"is"enhanced"by"IkappaBalpha"super-repressor"and"parthenolide[J]."Oncogene,"2000,"19(36):"4159–"4169.
[11] HOESEL"B,"SCHMID"J"A."The"complexity"of"NF-κB"signaling"in"inflammation"and"cancer[J]."Mol"Cancer,"2013,"12:"86.
[12] YU"H,"LIN"L,"ZHANG"Z,"et"al."Targeting"NF-κB"pathway"for"the"therapy"of"diseases:"Mechanism"and"clinical"study[J]."Signal"Transduct"Target"Ther,"2020,"5(1):"209.
[13] JIAO"L,"WANG"S,"ZHENG"Y,"et"al."Betulinic"acid"suppresses"breast"cancer"aerobic"glycolysis"via"caveolin-1/"NF-κB/c-Myc"pathway[J]."Biochem"Pharmacol,"2019,"161:"149–162.
[14] TILBORGHS"S,"CORTHOUTS"J,"VERHOEVEN"Y,"et"al."The"role"of"nuclear"factor-kappa"B"signaling"in"human"cervical"cancer[J]."Crit"Rev"Oncol"Hematol,"2017,"120:"141–150.
[15] MIRZAEI"S,"SAGHARI"S,"BASSIRI"F,"et"al."NF-κB"as"a"regulator"of"cancer"metastasis"and"therapy"response:"A"focus"on"epithelial-mesenchymal"transition[J]."J"Cell"Physiol,"2022,"237(7):"2770–2795.
[16] NOMURA"A,"GUPTA"V"K,"DAUER"P,"et"al."NF-κB-"mediated"invasiveness"in"CD133+"pancreatic"TICs"is"regulated"by"autocrine"and"paracrine"activation"of"IL1"signaling[J]."Mol"Cancer"Res,"2018,"16(1):"162–"172.
[17] MIRICESCU"D,"TOTAN"A,"STANESCU-SPINU"I"I,"et"al."PI3K/Akt/mTOR"signaling"pathway"in"breast"cancer:"From"molecular"landscape"to"clinical"aspects[J]."Int"J"Mol"Sci,"2020,"22(1):"173.
[18] TSOLAKOS"N,"DURRANT"T"N,"CHESSA"T,"et"al."Quantitation"of"class"IA"PI3Ks"in"mice"reveals"p110-"free-p85s"and"isoform-selective"subunit"associations"and"recruitment"to"receptors[J]."Proc"Natl"Acad"Sci"USA,"2018,"115(48):"12176–12181.
[19] XU"F,"NA"L,"LI"Y,"et"al."Roles"of"the"PI3K/Akt/mTOR"signalling"pathways"in"neurodegenerative"diseases"and"tumours[J]."Cell"Biosci,"2020,"10(1):"54.
[20] CHEN"X,"CHEN"W,"AUNG"Z"M,"et"al."LY3023414"inhibits"both"osteogenesis"and"osteoclastogenesis"through"the"PI3K/Akt/GSK3"signalling"pathway[J]."Bone"Joint"Res,"2021,"10(4):"237–249.
[21] MILLER"T"W,"HENNESSY"B"T,"GONZáLEZ-ANGULO"A"M,"et"al."Hyperactivation"of"phosphatidylinositol-3"kinase"promotes"escape"from"hormone"dependence"in"estrogen"receptor-positive"human"breast"cancer[J]."J"Clin"Invest,"2010,"120(7):"2406–2413.
[22] LANNUTTI"B"J,"MEADOWS"S"A,"HERMAN"S"E,"et"al."CAL-101,"a"p110delta"selective"phosphatidylinositol-3-"kinase"inhibitor"for"the"treatment"of"B-cell"malignancies,"inhibits"PI3K"signaling"and"cellular"viability[J]."Blood,"2011,"117(2):"591–594.
[23] SUTHERLIN"D"P,"BAO"L,"BERRY"M,"et"al."Discovery"of"a"potent,"selective,"and"orally"available"class"I"phosphatidylinositol"3-kinase"(PI3K)/mammalian"target"of"rapamycin"(mTOR)"kinase"inhibitor"(GDC-0980)"for"the"treatment"of"cancer[J]."J"Med"Chem,"2011,"54(21):"7579–7587.
[24] GUERRERO-ZOTANO"A,"MAYER"I"A,"ARTEAGA"C"L."PI3K/Akt/mTOR:"Role"in"breast"cancer"progression,"drug"resistance,"and"treatment[J]."Cancer"Metastasis"Rev,"2016,"35(4):"515–524.
[25] ASATI"V,"MAHAPATRA"D"K,"BHARTI"S"K."PI3K/"Akt/mTOR"and"Ras/Raf/MEK/ERK"signaling"pathways"inhibitors"as"anticancer"agents:"Structural"and"pharmacological"perspectives[J]."Eur"J"Med"Chem,"2016,"109:"314–341.
[26] DONG"C,"WU"J,"CHEN"Y,"et"al."Activation"of"PI3K/"Akt/mTOR"pathway"causes"drug"resistance"in"breast"cancer[J]."Front"Pharmacol,"2021,"12:"628690.
[27] JOHNSON"D"E,"O’KEEFE"R"A,"GRANDIS"J"R."Targeting"the"IL-6/JAK/STAT3"signalling"axis"innbsp;cancer[J]."Nat"Rev"Clin"Oncol,"2018,"15(4):"234–248.
[28] BALDINI"C,"MORICONI"F"R,"GALIMBERTI"S,"et"al."The"JAK-STAT"pathway:"An"emerging"target"for"cardiovascular"disease"in"rheumatoid"arthritis"and"myeloproliferative"neoplasms[J]."Eur"Heart"J,"2021,"42(42):"4389–4400.
[29] VILLARINO"A"V,"KANNO"Y,"O’SHEA"J"J."Mechanisms"and"consequences"of"JAK-STAT"signaling"in"the"immune"system[J]."Nat"Immunol,"2017,"18(4):"374–384.
[30] HARICHARAN"S,"LI"Y."STAT"signaling"in"mammary"gland"differentiation,"cell"survival"and"tumorigenesis[J]."Mol"Cell"Endocrinol,"2014,"382(1):"560–569.
[31] SHEA-DONOHUE"T,"FASANO"A,"SMITH"A,"et"al."Enteric"pathogens"and"gut"function:"Role"of"cytokines"and"STATs[J]."Gut"Microbes,"2010,"1(5):"316–324.
[32] AVALLE"L,"RAGGI"L,"MONTELEONE"E,"et"al."STAT3"induces"breast"cancer"growth"via"ANGPTL4,"MMP13"and"STC1"secretion"by"cancer"associated"fibroblasts[J]."Oncogene,"2022,"41(10):"1456–1467.
[33] BRATTHAUER"G"L,"STRAUSS"B"L,"TAVASSOLI"F"A."STAT"5a"expression"in"various"lesions"of"the"breast[J]."Virchows"Arch,"2006,"448(2):"165–171.
[34] LEEHY"K"A,"TRUONG"T"H,"MAURO"L"J,"et"al."Progesterone"receptors"(PR)"mediate"STAT"actions:"PR"and"prolactin"receptor"signaling"crosstalk"in"breast"cancer"models[J]."J"Steroid"Biochem"Mol"Biol,"2018,"176:nbsp;88–93.
[35] NASCIMENTO"A"S,"PERES"L"L,"FARI"A"V"S,"et"al."Phosphoproteome"profiling"reveals"critical"role"of"JAK-"STAT"signaling"in"maintaining"chemoresistance"in"breast"cancer[J]."Oncotarget,"2017,"8(70):"114756–"114768.
[36] BRAY"S"J."Notch"signalling"in"context[J]."Nat"Rev"Mol"Cell"Biol,"2016,"17(11):"722–735.
[37] BAI"J"W,"WEI"M,"LI"J"W,"et"al."Notch"signaling"pathway"and"endocrine"resistance"in"breast"cancer[J]."Front"Pharmacol,"2020,"11:"924.
[38] HILSCHER"M"B,"SEHRAWAT"T,"ARAB"J"P,"et"al."Mechanical"stretch"increases"expression"of"CXCL1"in"liver"sinusoidal"endothelial"cells"to"recruit"neutrophils,"generate"sinusoidal"microthombi,"and"promote"portal"hypertension[J]."Gastroenterology,"2019,"157(1):"193–209.
[39] KORKAYA"H,"WICHA"M"S."HER-2,"notch,"and"breast"cancer"stem"cells:"Targeting"an"axis"of"evil[J]."Clin"Cancer"Res,"2009,"15(6):"1845–1847.
[40] GIULI"M"V,"GIULIANI"E,"SCREPANTI"I,"et"al."Notch"signaling"activation"as"a"hallmark"for"triple-negative"breast"cancer"subtype[J]."J"Oncol,"2019,"2019:"8707053.
[41] HARVEY"B"M,"HALTIWANGER"R"S."Regulation"of"Notch"function"by"O-glycosylation[J]."Adv"Exp"Med"Biol,"2018,"1066:"59-78.
[42] KUMAR"S,"NANDI"A,"SINGH"S,"et"al."Dll1+"quiescent"tumor"stem"cells"drive"chemoresistance"in"breast"cancer"through"NF-κB"survival"pathway[J]."Nat"Commun,"2021,"12(1):"432.
[43] DERYNCK"R,"BUDI"E"H."Specificity,"versatility,"and"control"of"TGF-β"family"signaling[J]."Sci"Signal,"2019,"12(570):"eaav5183.
[44] IKUSHIMA"H,"MIYAZONO"K."Cellular"context-"dependent"“colors”"of"transforming"growth"factor-beta"signaling[J]."Cancer"Sci,"2010,"101(2):"306–312.
[45] HU"H"H,"CHEN"D"Q,"WANG"Y"N,"et"al."New"insights"into"TGF-β/Smad"signaling"in"tissue"fibrosis[J]."Chem"Biol"Interact,"2018,"292:"76–83.
[46] ZHANG"Y"E."Non-Smad"signaling"pathways"of"the"TGF-β"family[J]."Cold"Spring"Harb"Perspect"Biol,"2017,"9(2):"a022129.
[47] KATSUNO"Y,"HANYU"A,"KANDA"H,"et"al."Bone"morphogenetic"protein"signaling"enhances"invasion"and"bone"metastasis"of"breast"cancer"cells"through"Smad"pathway[J]."Oncogene,"2008,"27(49):"6322–6333.
[48] RIOS"GARCIA"M,"STEINBAUER"B,"SRIVASTAVA"K,"et"al."Acetyl-CoA"carboxylase"1-dependent"protein"acetylation"controls"breast"cancer"metastasis"and"recurrence[J]."Cell"Metab,"2017,"26(6):"842–855.
[49] XU"J,"ACHARYA"S,"SAHIN"O,"et"al."14-3-3ζ"turns"TGF-β’s"function"from"tumor"suppressor"to"metastasis"promoter"in"breast"cancer"by"contextual"changes"of"Smad"partners"from"p53"to"Gli2[J]."Cancer"Cell,"2015,"27(2):"177–192.
[50] YU"Y,"LUO"W,"YANG"Z"J,"et"al."miR-190"suppresses"breast"cancer"metastasis"by"regulation"of"TGF-β-induced"epithelial-mesenchymal"transition[J]."Mol"Cancer,"2018,"17(1):"70.
[51] SHI"X,"YANG"J,"DENG"S,"et"al."TGF-β"signaling"in"the"tumor"metabolic"microenvironment"and"targeted"therapies[J]."J"Hematol"Oncol,"2022,"15(1):"135.
[52] RIM"E"Y,"CLEVERS"H,"NUSSE"R."The"Wnt"pathway:"From"signaling"mechanisms"to"synthetic"modulators[J]."Annu"Rev"Biochem,"2022,"91:"571–598.
[53] MIKELS"A"J,"NUSSE"R."Wnts"as"ligands:"Processing,"secretion"and"reception[J]."Oncogene,"2006,"25(57):"7461–7468.
[54] GAJOS-MICHNIEWICZ"A,"CZYZ"M."Wnt"signaling"in"melanoma[J]."Int"J"Mol"Sci,"2020,"21(14):"4852.
[55] DOUMPAS"N,"LAMPART"F,"ROBINSON"M"D,"et"al."TCF/LEF"dependent"and"independent"transcriptional"regulation"of"Wnt/β-catenin"target"genes[J]."EMBO"J,"2019,"38(2):"e98873.
[56] GUJRAL"T"S,"CHAN"M,"PESHKIN"L,"et"al."A"noncanonical"Frizzled2"pathway"regulates"epithelial-"mesenchymal"transition"and"metastasis[J]."Cell,"2014,"159(4):"844–856.
[57] WEND"P,"RUNKE"S,"WEND"K,"et"al."Wnt10B/"β-catenin"signalling"induces"HMGA2"and"proliferation"in"metastatic"triple-negative"breast"cancer[J]."EMBO"Mol"Med,"2013,"5(2):"264–279.
[58] WANG"X,"JUNG"Y"S,"JUN"S,"et"al."PAF-Wnt"signaling-induced"cell"plasticity"is"required"for"maintenance"of"breast"cancer"cell"stemness[J]."Nat"Commun,"2016,"7:"10633.
[59] "SHACKLETON"M,"VAILLANT"F,"SIMPSON"K"J,"et"al."Generation"of"a"functional"mammary"gland"from"a"single"stem"cell[J]."Nature,"2006,"439(7072):"84–88.
(收稿日期:2023–03–19)
(修回日期:2024–02–18)