[摘要]" 放療作為乳腺癌保乳術(shù)后及部分根治術(shù)后患者的常規(guī)治療,能提高局控率,降低遠(yuǎn)期死亡風(fēng)險(xiǎn),達(dá)到提高總生存率的目的。放射性肺損傷是胸部腫瘤放療的并發(fā)癥之一。在乳腺癌放射治療中,最大限度降低肺受照劑量,能夠有效減少放射性肺損傷發(fā)生率,提高患者的生存質(zhì)量,有利于患者得到最大的生存獲益。本文主要從預(yù)防的角度,總結(jié)了乳腺癌放療肺保護(hù)的技術(shù)方法及其研究進(jìn)展,以及藥物防治,包括化療、內(nèi)分泌治療對(duì)肺損傷的影響,以期為減輕乳腺癌抗腫瘤治療過程中所造成的肺損傷提供依據(jù)及研究方向。
[關(guān)鍵詞]" 乳腺癌;肺臟保護(hù);肺臟損傷;放射治療;劑量參數(shù);藥物治療
[中圖分類號(hào)]" R737.9" [文獻(xiàn)標(biāo)志碼]" A" [文章編號(hào)]" 1671-7783(2024)05-0442-09
DOI: 10.13312/j.issn.1671-7783.y230319
[引用格式]崔藝捷,王曉杰,李爽,等. 乳腺癌放射治療肺臟保護(hù)的研究進(jìn)展[J]. 江蘇大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2024, 34(5): 442-450.
[作者簡介]崔藝捷(1997—),女,住院醫(yī)師,醫(yī)學(xué)碩士,主要從事乳腺癌放射治療相關(guān)研究;鄧曉琴(通訊作者),教授,主任醫(yī)師,E-mail: 18098876699@163.com
國家癌癥中心最新數(shù)據(jù)顯示,乳腺癌發(fā)病率位于中國女性惡性腫瘤的第二位,且發(fā)病率呈逐年增長的趨勢(shì)[1]。放射治療作為手術(shù)之外的乳腺癌局部治療手段,在乳腺癌的綜合治療中發(fā)揮重要作用,在術(shù)后輔助治療中廣泛應(yīng)用,亦可用于局部區(qū)域復(fù)發(fā)患者的治療。在保乳術(shù)后且淋巴結(jié)多為陰性的患者群體中,輔助放療可降低3.8%的15年絕對(duì)乳腺癌特異性死亡率[2];在淋巴結(jié)陽性患者中,乳房全切及放療可降低約8%的20年絕對(duì)乳腺癌特異性死亡率[3]。隨著乳腺癌綜合治療的不斷進(jìn)步,乳腺癌患者的生存期也逐漸延長,故放療對(duì)心、肺等正常組織的潛在損傷應(yīng)盡可能降至最低,以使患者得到最大的生存獲益。
放射性肺損傷(radiation induced lung injury,RILI)是胸部放療劑量限制的一大因素。其可分為:出現(xiàn)于放療后早期(lt;6個(gè)月)的急性損傷反應(yīng),多見放射性肺炎;及6個(gè)月甚至數(shù)年之后出現(xiàn)的晚期損傷,即放射性肺纖維化。放射性肺纖維化一旦出現(xiàn)多不可逆,故RILI的最佳應(yīng)對(duì)措施在于預(yù)防。在一項(xiàng)250例乳腺癌切線野放療的隊(duì)列研究中,放療后3個(gè)月癥狀性放射性肺炎發(fā)病率為19%,放療后12個(gè)月癥狀性肺纖維化發(fā)病率為16%,在更長期隨訪中單純影像學(xué)放射性肺纖維化1級(jí)的發(fā)生率高達(dá)91%;內(nèi)分泌治療及全切術(shù)式對(duì)RILI的發(fā)生具有促進(jìn)作用[4-5]。乳腺癌的多種治療手段,如化療、內(nèi)分泌治療等,當(dāng)與放療相互疊加,可以影響RILI的發(fā)生與發(fā)展,甚至加重RILI。本文主要總結(jié)放療技術(shù)、藥物防治及乳腺癌綜合治療手段等方面減輕乳腺癌RILI的研究進(jìn)展,以期為減輕乳腺癌抗腫瘤治療過程中所造成的肺損傷及提高患者生存獲益提供決策依據(jù)和研究方向。
1" 放射治療方向
在胸部腫瘤放療中,RILI的出現(xiàn)與放療技術(shù)、照射部位、總照射劑量、分割模式、劑量率、肺的具體劑量體積參數(shù)及患者個(gè)體差異等因素有關(guān)[6-7]。乳腺癌放療,無論是對(duì)乳腺或胸壁,還是對(duì)區(qū)域淋巴結(jié)進(jìn)行照射,均可以(45~50.4)Gy/(25~28)次的常規(guī)分割進(jìn)行,或者采用(40~42.5)Gy/(15~16)次的大分割;保乳術(shù)后推薦的瘤床加量方案,常規(guī)分割劑量為(10~16)Gy/(4~8)次,大分割劑量為(8.7~10)Gy/(3~4)次。在一項(xiàng)3 894例乳腺癌輔助放療的回顧性研究中,含區(qū)域淋巴結(jié)的放療、寬切線野、瘤床推量、胸壁照射(相比于乳腺照射)、反向或仰臥位(相比于俯臥位)、常規(guī)分割(相比于大分割)、低于2 470 cm3的肺體積均是更高平均肺劑量的獨(dú)立預(yù)測因素[8]。亦有研究指出[9],大分割放療相比于常規(guī)分割發(fā)生放射性肺炎的風(fēng)險(xiǎn)更高。肺作為乳腺癌放療的危及器官,應(yīng)主要通過優(yōu)化放療技術(shù)及執(zhí)行更嚴(yán)格的劑量體積參數(shù)限制,從而降低肺的受照劑量和體積以實(shí)現(xiàn)對(duì)其保護(hù)作用。
1.1" 放射治療技術(shù)
常規(guī)三維適形放療(three dimensional conformal radio-therapy,3DCRT)或野中野3DCRT是目前乳腺癌放療的標(biāo)準(zhǔn)技術(shù)。對(duì)于心肺照射劑量高、胸廓形狀特殊的患者,調(diào)強(qiáng)放療(intensity-modulated radio-therapy,IMRT)技術(shù)優(yōu)于常規(guī)三維適形或野中野技術(shù),有條件的單位可以采用IMRT。具備相應(yīng)條件的單位也可聯(lián)合使用基于深吸氣條件下的呼吸門控技術(shù)或者俯臥位照射技術(shù),以進(jìn)一步降低心臟和肺的照射劑量。
1.1.1" 調(diào)強(qiáng)適形放療" IMRT與3DCRT相比,使用了現(xiàn)有3DCRT的所有技術(shù),并采用了逆向治療計(jì)劃設(shè)計(jì)模式,可根據(jù)臨床劑量要求,逆向生成非均勻射束強(qiáng)度,提高了靶區(qū)劑量覆蓋,改善了靶區(qū)劑量分布的適形性、均勻性,且靶區(qū)外劑量跌落明顯。容積調(diào)強(qiáng)(volumetric modulated arc therapy,VMAT)及螺旋斷層治療(helical tomotherapy,HT)是實(shí)現(xiàn)IMRT的兩種旋轉(zhuǎn)照射形式,較IMRT的多野交角照射更為先進(jìn),對(duì)放療加速器的技術(shù)要求也更為嚴(yán)苛。VMAT技術(shù)在IMRT的基礎(chǔ)上,加速器機(jī)架在治療過程中不斷旋轉(zhuǎn),大大縮短了治療時(shí)間。乳腺癌放療應(yīng)用VMAT技術(shù)亦能降低肺等危及器官劑量[10-11]。HT的治療方式因模擬CT掃描技術(shù)而得名,嵌入式直線加速器在環(huán)形機(jī)架上可繞治療床進(jìn)行360°旋轉(zhuǎn)照射,同時(shí)治療床沿長軸方向步進(jìn),尤其適用于較長照射野、多發(fā)病灶以及距離重要器官較近部位的放療。相關(guān)研究比較了乳腺癌中HT、VMAT、IMRT及野中野3DCRT放療技術(shù)的應(yīng)用,HT能最大限度降低心、肺以及冠狀動(dòng)脈的劑量,但延長了射線照射時(shí)間[12-13]。在臨床實(shí)際中,HT技術(shù)也因費(fèi)用昂貴尚未普及,VMAT及IMRT仍是調(diào)強(qiáng)技術(shù)的主流。
由于IMRT的劑量分布與靶區(qū)適形度較常規(guī)3DCRT技術(shù)有了極大的改善,故IMRT、VMAT對(duì)危及器官高劑量照射區(qū)的保護(hù)作用明顯[14-15];但由于兩者有更大的散射和機(jī)器跳數(shù),使得危及器官低劑量照射體積明顯更高[16-17]。更大體積的正常組織暴露于低劑量射線可提高放療誘導(dǎo)的第二原發(fā)癌風(fēng)險(xiǎn)[18]。Haciislamoglu等[19]對(duì)12例左乳癌保乳患者生成野中野3DCRT、IMRT、VMAT三種放療計(jì)劃,其中基于野中野3DCRT技術(shù)得到的患側(cè)肺、健側(cè)肺及健側(cè)乳腺第二原發(fā)癌超額絕對(duì)風(fēng)險(xiǎn)(excess absolute risk,EAR)值均最低,無論使用IMRT或VMAT技術(shù),患側(cè)肺第二原發(fā)癌風(fēng)險(xiǎn)相似;作者指出,當(dāng)?shù)诙l(fā)癌風(fēng)險(xiǎn)為主要顧慮時(shí),更應(yīng)傾向于選擇3DCRT技術(shù)。Fogliata等[20]亦在20例左乳癌保乳患者中比較野中野3DCRT、VMAT-tang、VMAT-full三種計(jì)劃的EAR值;VMAT-tang計(jì)劃為VMAT-full計(jì)劃基礎(chǔ)上包含加速器劑量率為0的旋轉(zhuǎn)弧的優(yōu)化計(jì)劃。VMAT-tang與3DCRT技術(shù)對(duì)于肺及乳腺的EAR值無差異,且均小于VMAT-full技術(shù);而3DCRT對(duì)于肺、心臟及皮膚的正常組織并發(fā)癥概率(normal tissue complication probability,NTCP)均明顯大于兩種VMAT技術(shù);故認(rèn)為VMAT-tang在降低第二原發(fā)癌風(fēng)險(xiǎn)上等同于3DCRT技術(shù),且能同時(shí)降低NTCP。綜合以上研究,在乳腺癌放療的臨床實(shí)踐中,通過調(diào)整并選擇恰當(dāng)?shù)恼{(diào)強(qiáng)技術(shù),執(zhí)行更嚴(yán)格的肺中高劑量及低劑量體積參數(shù)限值,能更好地平衡高劑量區(qū)肺的保護(hù)及低劑量區(qū)的暴露,在降低NTCP的同時(shí)不明顯增加第二原發(fā)癌風(fēng)險(xiǎn)。
1.1.2" 質(zhì)子放療" 質(zhì)子束照射時(shí)大部分能量沉積在射程的末端,形成布拉格峰型劑量分布,運(yùn)用自動(dòng)化技術(shù)控制質(zhì)子能量釋放的方向、部位和射程,可將布拉格峰控制在腫瘤靶區(qū)的邊界,使腫瘤組織接受的劑量很高,正常組織劑量很小。在乳腺癌質(zhì)子放療的相關(guān)研究中,將調(diào)強(qiáng)質(zhì)子治療(intensity modulated-proton therapy,IMPT)與HT、VMAT、IMRT技術(shù)相比較,均是質(zhì)子放療獲得了最低的心、肺、冠狀動(dòng)脈左前降支(left anterior descending artery,LAD)等危及器官劑量,同時(shí)明顯降低由放療導(dǎo)致的心臟疾病及肺癌死亡風(fēng)險(xiǎn),且能保證良好的計(jì)劃靶區(qū)(planning target volume,PTV)劑量覆蓋,但缺點(diǎn)是提高了皮膚劑量,昂貴且尚未普及[21-23]。
乳腺癌放療的肺劑量必將隨著照射部位的增多而明顯增加。符合內(nèi)乳區(qū)照射指征的患者,大多需同時(shí)照射鎖骨上下區(qū),是照射范圍最廣的一類患者;內(nèi)乳區(qū)位于胸廓內(nèi)動(dòng)靜脈所在處,其照射增加了切線野的切肺深度;故這類患者是臨床中肺劑量最高的人群。而一項(xiàng)1994至2015年間發(fā)表文獻(xiàn)的薈萃分析指出,乳腺癌患者行包含內(nèi)乳區(qū)的區(qū)域淋巴結(jié)放療,不僅明顯改善無病生存率,且能獲得更好的整體存活率[24]。Dasu等[25]證明,質(zhì)子放療能在照射內(nèi)乳區(qū)的情況下,即使不使用呼吸門控技術(shù),也能獲得6.6 Gy(RBE)這一較低的患側(cè)肺平均劑量[PTV劑量為50 Gy(RBE)/25次]。1例需照射內(nèi)乳區(qū)的左乳癌患者,普通調(diào)強(qiáng)放療計(jì)劃均不能滿足肺劑量參數(shù)限值,而IMPT將平均心臟劑量降至僅為0.55 Gy,左肺V20為11%[26]。Austin等[27]通過構(gòu)建基于治療花銷及治療后質(zhì)量調(diào)整生命年的計(jì)算模型,比較16例患者IMRT及IMPT放療的花費(fèi)性價(jià)比,其中僅有1例患者IMPT治療性價(jià)比更高,因其IMRT肺劑量及可能的肺癌風(fēng)險(xiǎn)較IMPT明顯增高。由于質(zhì)子放療昂貴及普及率低的特點(diǎn),故考慮將其首先應(yīng)用于心、肺等危及器官高劑量的乳腺癌放療患者,或需照射內(nèi)乳區(qū)的患者,以提高患者長期生存質(zhì)量,可能是其未來的發(fā)展方向。
1.1.3nbsp; 深吸氣屏氣技術(shù)" 深吸氣屏氣(deep inspi-ration breath hold,DIBH)技術(shù)是通過控制呼吸、改變治療體位而實(shí)現(xiàn)劑量優(yōu)勢(shì)的新興放療技術(shù),其利用體表光學(xué)圖像引導(dǎo)放療系統(tǒng)以及呼吸門控裝置實(shí)現(xiàn)了體位的監(jiān)測及可重復(fù)性。DIBH可用于左側(cè)乳腺癌放療以減少心臟劑量,其原理是在DIBH狀態(tài)下進(jìn)行定位CT掃描及放射治療,可使胸廓明顯擴(kuò)張,心臟遠(yuǎn)離胸壁從而遠(yuǎn)離靶區(qū)。在對(duì)左乳癌DIBH與自由呼吸放療比較的最新研究中,DIBH能明顯降低左肺平均劑量、V5、V20等劑量參數(shù),故在肺保護(hù)上表現(xiàn)出明顯的優(yōu)勢(shì)[28-31];需要注意的是,當(dāng)體位為俯臥位而非仰臥位時(shí),DIBH狀態(tài)下的肺劑量參數(shù)值均高于自由呼吸[29,32]。關(guān)于DIBH降低肺劑量的潛在機(jī)制,Oechsner等[33]在對(duì)左乳癌的研究中指出,DIBH相比于自由呼吸狀態(tài)下,肺組織密度減低,雖受照射肺實(shí)際體積值增加,但受照射肺體積占全肺體積比降低,受照射肺實(shí)際重量及占全肺重量比降低。而對(duì)于右側(cè)乳腺放療,相關(guān)研究指出,當(dāng)照射野包含區(qū)域淋巴結(jié)時(shí),DIBH狀態(tài)下的患側(cè)肺劑量參數(shù)較自由呼吸明顯降低,而當(dāng)僅照射右側(cè)乳腺,兩種狀態(tài)下的肺劑量無明顯差異[34-35]。
雖整體的研究結(jié)論支持DIBH降低乳腺癌放療的肺劑量,尤以左側(cè)乳腺放療的研究為多,但不乏一些研究得出DIBH對(duì)肺保護(hù)的陰性結(jié)果[8,36]。DIBH技術(shù)雖原理簡單,但需要篩選出能夠配合的患者,且定位及治療前需要預(yù)留呼吸訓(xùn)練時(shí)間,其廣泛應(yīng)用必將占用更多的人力物力資源。并非所有患者,在DIBH放療中均能獲得明顯的危及器官劑量受益,故尋找患者相關(guān)的劑量獲益預(yù)測指標(biāo)具有很大的研究價(jià)值。Czeremszyńska等[37]在30例左乳癌保乳術(shù)后放療中,將劑量參數(shù)與患者個(gè)體參數(shù)進(jìn)行相關(guān)分析,DIBH相比于自由呼吸放療狀態(tài)下的劑量受益(平均心臟劑量差值、心臟V20差值)與BMI、PTV體積、心臟接觸距離(胸骨左側(cè)心臟與胸壁接觸的最大距離)均呈正相關(guān),與自由呼吸時(shí)雙肺體積呈負(fù)相關(guān)。Oechsner等[33]亦通過相關(guān)分析得出,自由呼吸時(shí)PTV體積越大,左肺在DIBH狀態(tài)下的劑量受益(平均劑量差值、V20差值等)越小。更多預(yù)測DIBH肺劑量受益的患者個(gè)體參數(shù)有待進(jìn)一步的研究。而DIBH對(duì)肺劑量的改善程度,亦與放療技術(shù)有關(guān)。DIBH對(duì)適形度更好的IMRT及VMAT技術(shù)的心肺劑量降低程度要小于3DCRT技術(shù)[38]。
通常情況下,文獻(xiàn)中所提到的DIBH為胸式呼吸。有研究者將DIBH細(xì)分為胸式呼吸與腹式呼吸,兩者具體操作時(shí)的差異在于患者呼吸時(shí)胸、腹部體表位移的不同,并可被醫(yī)師肉眼區(qū)別。一些研究得出,腹式DIBH較胸式DIBH明顯降低肺劑量參數(shù),如平均劑量、V20、V30等,且不增加心臟劑量,體現(xiàn)出對(duì)肺的突出保護(hù)作用,其原因可能與腹式呼吸時(shí)心肺向尾側(cè)移位更顯著有關(guān)[39-40]。
1.1.4" 俯臥位技術(shù)" 保乳術(shù)后俯臥位放療通過減少乳腺與胸壁接觸面積,減少照射野內(nèi)肺體積及肺劑量,尤其適用于大體積或懸垂乳腺。Saini等[41]比較33例pT1-2N0左乳癌行仰臥位自由呼吸、仰臥位DIBH及俯臥位自由呼吸的大分割放療,俯臥位自由呼吸在明顯降低心臟劑量的同時(shí)獲得了最低的平均左肺劑量,為0.61 Gy。Lai等[42]的一篇系統(tǒng)綜述亦證實(shí)了俯臥位自由呼吸對(duì)患側(cè)肺的劑量學(xué)保護(hù)作用較仰臥位自由呼吸、仰臥位DIBH有明顯優(yōu)勢(shì),且不同方案間的靶區(qū)覆蓋情況沒有差異。Speleers等[23]在左側(cè)乳腺及含內(nèi)乳的區(qū)域淋巴結(jié)照射患者中得出,俯臥位較仰臥位既能降低光子放療肺劑量,又能降低質(zhì)子放療肺劑量。Yan等[43]比較34例左側(cè)全乳放療應(yīng)用仰臥位DIBH或俯臥位自由呼吸技術(shù),后者將平均肺劑量降至45.2 cGy(Plt;0.000 1),同時(shí)將第二原發(fā)肺癌的超額死亡率從0.5%降至0%。由此可見,保乳患者俯臥位放療可能較DIBH具有更大的肺保護(hù)作用。而Wang等[44]的研究具體指出了關(guān)于俯臥位自由呼吸相比于仰臥位DIBH對(duì)危及器官整體的劑量獲益的預(yù)測因素,包括患側(cè)乳腺的俯臥位與仰臥位乳腺深度比值(gt;1.6)、乳腺深度差異(gt;31 mm)、俯臥位乳腺深度(gt;77 mm)及乳腺體積(gt;282 cm3)。在一些研究中,俯臥位體位被具體分成了俯臥潛水和俯臥爬行姿勢(shì),兩者的區(qū)別在于,前者雙臂上舉過頭,后者將健側(cè)手臂上舉而患側(cè)手臂置于體側(cè)。兩種姿勢(shì)相比,俯臥爬行姿勢(shì)患側(cè)乳腺更向深處下沉并向尾側(cè)移位,故能進(jìn)一步降低患側(cè)及健側(cè)肺劑量[45]。
1.1.5" 四維計(jì)算機(jī)斷層掃描技術(shù)" 腫瘤及危及器官的運(yùn)動(dòng)可明顯影響胸腹部放療的精確性和有效性。對(duì)于胸腹部腫瘤,呼吸運(yùn)動(dòng)對(duì)由臨床靶區(qū)(clinical target volume,CTV)至PTV外擴(kuò)邊界的確定影響較大。四維計(jì)算機(jī)斷層掃描(four-dimensional computed tomography,4DCT)放療是相對(duì)于三維放療而言的,其實(shí)現(xiàn)亦需要以圖像引導(dǎo)技術(shù)為基礎(chǔ)。自由呼吸時(shí)一個(gè)呼吸周期在4DCT放療中可分為10期并獲得10組CT圖像,為了減少在10期勾畫靶區(qū)的工作量,基于圖像的CT值衍生出了最大密度投影(maximal intensity projection,MIP)、平均密度投影(average intensity projection,AIP)、呼吸末期等圖像組合方式。現(xiàn)階段,4DCT放療技術(shù)在臨床中主要應(yīng)用于肺或肝臟腫瘤的體部立體定向放療,在乳腺癌中的研究及應(yīng)用較少。Wang等[46]及Guo等[47]分別在17例全乳放療和20例外照射部分乳腺放療中,比較基于3DCT及4DCT呼氣末和吸氣末時(shí)相的計(jì)劃劑量參數(shù)。前一研究中,4DCT呼氣末時(shí)相得到的患側(cè)肺劑量在3DCT及兩種4DCT放療計(jì)劃中最低,且明顯低于4DCT吸氣末時(shí)相。后一研究中,兩種呼吸時(shí)相的4DCT計(jì)劃均明顯降低心肺等危及器官放射暴露。兩項(xiàng)研究中認(rèn)為,4DCT較3DCT放療計(jì)劃有利于靶區(qū)劑量的精確配給,更適用于呼吸節(jié)律不規(guī)則者。Yan等[48]在7例全乳放療中證實(shí),4DCT的MIP、AIP放療計(jì)劃相比于3DCT,靶區(qū)適形指數(shù)、均質(zhì)指數(shù)大小無明顯差異,但縮小了靶區(qū)照射體積,提高了靶區(qū)劑量,且同時(shí)可改善心肺及健側(cè)乳腺的照射保護(hù)。Chau等[49]在15例全乳放療中比較DIBH及兩種基于4DCT的治療計(jì)劃(4DCT常規(guī)及優(yōu)化計(jì)劃),DIBH計(jì)劃可實(shí)現(xiàn)最佳的心臟及其亞結(jié)構(gòu)保護(hù),4DCT優(yōu)化計(jì)劃可作為不能耐受DIBH時(shí)的備選計(jì)劃,但多種計(jì)劃間未顯示出肺的劑量差異。以上結(jié)果提示,在乳腺癌中應(yīng)用4DCT放療較三維放療具有潛在的肺保護(hù)作用,但能最大限度降低肺劑量的計(jì)劃設(shè)計(jì)圖像選擇仍有待進(jìn)一步研究。
1.2" 劑量限制指標(biāo)
肺作為危及器官中的“并聯(lián)組織結(jié)構(gòu)”,其放射性損傷的發(fā)生不僅與受照的實(shí)際劑量相關(guān),而且與受某一劑量照射的肺體積大小相關(guān),后者在放療計(jì)劃中常以Vx(%)表示,即接受≥x Gy劑量的肺體積占肺全部體積的百分比。在大量相關(guān)研究中,多項(xiàng)肺劑量參數(shù)均對(duì)RILI的發(fā)生具有一定程度的預(yù)測作用。Blom Goldman等[50]對(duì)29例輔助放療患者隨訪11年,采集胸部CT并進(jìn)行放療反應(yīng)程度評(píng)分,患側(cè)肺V20與隨訪11年CT評(píng)分呈正向線性相關(guān)(秩相關(guān)系數(shù)rs=0.57)。Snchez-Nieto等[51]評(píng)價(jià)66例非肺癌(51例乳腺癌、15例淋巴瘤)放療后1個(gè)月(代表急性期放療反應(yīng))、12個(gè)月(代表晚期反應(yīng))的多項(xiàng)肺功能指標(biāo)變化值與肺劑量指標(biāo)(平均肺劑量、劑量體積指標(biāo))的相關(guān)性,V20、V40分別與急性期及晚期放療反應(yīng)具有最強(qiáng)正相關(guān)。Zhou等[52]對(duì)109例乳腺癌術(shù)后放療患者中位隨訪13個(gè)月,單變量分析顯示患側(cè)肺V5、V10、V15、V20、V25、平均劑量及化療周期數(shù)均與RILI的發(fā)生相關(guān),多變量分析顯示患側(cè)肺V20為RILI發(fā)生的獨(dú)立預(yù)測因素,V20=29.03%為是否發(fā)生RILI的界值。Verbanck等[53]對(duì)84例乳腺癌放療后患者隨訪10年,肺彌散功能的降低程度與肺V20值正相關(guān)。Yilmaz等[54]對(duì)76例乳腺癌適形放療后患者進(jìn)行中位時(shí)間49個(gè)月的隨訪,ROC分析得出患側(cè)肺V5gt;41%對(duì)放射性肺纖維化的發(fā)生具有預(yù)測作用,敏感性和特異性分別為64%及86%。Ozgen等[55]對(duì)49例乳腺癌患者放療后隨訪6個(gè)月,ROC分析得出患側(cè)肺V5(臨界值45.9%)、V10(臨界值29.4%)、V20(臨界值23.0%)及平均肺劑量(臨界值1 200 cGy)對(duì)預(yù)測放射性肺炎的發(fā)生具有顯著作用。
在包括乳腺癌的胸部腫瘤放療中,臨床常用的肺劑量限制指標(biāo)目前主要有患側(cè)平均肺劑量、V20(患側(cè)及雙肺)及V5(患側(cè)及健側(cè)肺)。上述3項(xiàng)指標(biāo)側(cè)重不同,其聯(lián)合應(yīng)用有助于更全面地優(yōu)化肺的受照劑量,降低放療副損傷。RILI的發(fā)生雖受患者自身及治療的多因素影響,但就放療本身而言,將各項(xiàng)劑量限制指標(biāo)降至最低,是最小化RILI的直接途徑。
一些研究得出,患者個(gè)體解剖信息對(duì)放療肺劑量具有預(yù)測作用。Kundrt等[56]對(duì)128例全乳照射者設(shè)計(jì)不同的切線野3DCRT計(jì)劃,得到的同側(cè)肺平均劑量值在3~11 Gy,這一肺劑量的變化受患者左右側(cè)、治療機(jī)構(gòu)、治療計(jì)劃等因素的影響較小,而患者間解剖的差異為主要影響因素。建立各項(xiàng)肺劑量參數(shù)的預(yù)測公式模型,其中僅中心肺距離可將同側(cè)肺平均劑量值的變化范圍解釋約40%,中心肺距離、中腔肺寬度、最大心臟距離三者聯(lián)合能將這一變化范圍解釋約60%,且三者聯(lián)合亦能將同側(cè)肺V40、V30、V20等中高劑量區(qū)參數(shù)的變化范圍很好地解釋。Ma等[57]利用人工智能對(duì)乳腺癌放療患者的CT圖像進(jìn)行深度學(xué)習(xí),將患者的肺受照解剖特征數(shù)值化,這一組數(shù)值與患側(cè)肺V20劑量呈顯著正相關(guān)。該深度學(xué)習(xí)模型有望對(duì)患者RILI風(fēng)險(xiǎn)進(jìn)行治療前預(yù)測。
2" 藥物防治方向
放療過程中能起到肺保護(hù)作用的藥物,主要來源于以下4類:在放療暴露前應(yīng)用的放射保護(hù)劑,放療過程中或在放射毒性出現(xiàn)之前應(yīng)用的放射緩和劑,在放射毒性出現(xiàn)之后的治療藥物,臨床前模型中的有效藥物[58]。氨磷汀作為放射保護(hù)劑,可通過消除超氧化物歧化酶2及降低正常組織氧濃度從而減輕放療誘導(dǎo)的DNA受損[59]。多項(xiàng)隨機(jī)對(duì)照研究顯示,氨磷汀有利于減輕RILI及放療誘導(dǎo)的口腔干燥和食管炎[60]。血管緊張素轉(zhuǎn)化酶抑制劑(angiotensin-converting enzyme inhibitors,ACEI)可通過減輕大鼠放療暴露后肺內(nèi)膠原沉積來減輕放射性肺纖維化[61]。多項(xiàng)回顧性研究亦證明,服用ACEI可使肺部立體定向放射治療患者放射性肺炎發(fā)生率降低[62-63]。在一項(xiàng)隨機(jī)對(duì)照研究中,接受肺根治性放療的患者,若服用賴諾普利可使RILI相關(guān)的咳嗽、氣短癥狀發(fā)生率明顯降低[64]。烏司他汀是一種尿胰蛋白酶抑制劑,可降低C57BL/6小鼠放療暴露后肺組織的炎癥因子TNF-α、IL-6及纖維化相關(guān)因子TGF-β1的水平;通過放療前預(yù)處理可減輕RILI[65-66]。阿奇霉素是一種大環(huán)內(nèi)酯類抗生素,Tang等[67]在C57BL/6小鼠單次16 Gy照射后給予不同劑量的阿奇霉素,高劑量組明顯下調(diào)細(xì)胞因子IL-1β、IL-6、TNF-α、TGF-β1、α-平滑肌肌動(dòng)蛋白(α-smooth muscle actin,α-SMA)及α1-Ⅰ型膠原(α-1 type Ⅰ collagen,Col1α1),從而調(diào)節(jié)炎癥及纖維化過程,減輕RILI。肺的輻射暴露伴有IL-4及其受體和氧化酶基因雙氧化酶2(dual oxidase 2,DUOX2)表達(dá)上調(diào),而二甲雙胍可在肺高劑量暴露時(shí)下調(diào)IL-4/DUOX2途徑并減輕肺部病理反應(yīng)[68]。吡非尼酮和尼達(dá)尼布是兩種用于治療特發(fā)性肺纖維化的藥物。在C57BL/6小鼠胸部放療模型中,吡非尼酮可通過減輕M2巨噬細(xì)胞浸潤及抑制TGF-β1/Smad3信號(hào)途徑逆轉(zhuǎn)膠原沉積及肺纖維化[69]。現(xiàn)國內(nèi)有相關(guān)的隨機(jī)對(duì)照Ⅱ期臨床研究正在進(jìn)行,檢驗(yàn)吡非尼酮的服用對(duì)食管癌同步放化療后RILI發(fā)生的影響[70]。另一項(xiàng)Ⅱ期臨床研究證實(shí),對(duì)于二級(jí)及以上放射性肺炎患者,將尼達(dá)尼布加入標(biāo)準(zhǔn)的8周潑尼松逐漸減量治療模式,能明顯改善肺炎控制率[71]。RILI的臨床治療手段仍以糖皮質(zhì)激素為主,但大劑量激素的長期應(yīng)用帶來諸多不良反應(yīng),仍有待更廣泛的臨床研究及療效隨訪以拓寬RILI的治療選擇。
3" 綜合治療手段
乳腺癌輔助放療患者中,尤其全切患者,多已行新輔助或輔助化療;激素受體陽性患者輔助內(nèi)分泌治療可與放療同時(shí)或在放療后序貫進(jìn)行。AC-T(A:蒽環(huán)類,C:環(huán)磷酰胺,T:紫杉類)為高危乳腺癌患者常用的輔助化療方案。Snchez-Nieto等[51]隨訪51例乳腺癌放療患者,放療前進(jìn)行AC方案化療明顯加重放療1年后肺功能指標(biāo)中肺總量的受損。Yu等[72]比較放療前4周期紫杉醇序貫4周期FAC(F:5-氟尿嘧啶)化療與放療前8周期FAC化療兩組患者,前者放療后出現(xiàn)肺CT改變者較后者明顯增多,但兩組間放射性肺炎發(fā)生率無明顯差異。亦有紫杉醇化療后迅速出現(xiàn)間質(zhì)性肺炎的案例報(bào)道[73]。早期的研究顯示,放療同時(shí)服用他莫昔芬內(nèi)分泌治療增加肺纖維化發(fā)生率[74]。在Wistar大鼠模型中,放療聯(lián)合阿那曲唑內(nèi)分泌治療較單純放療明顯降低肺內(nèi)TGF-β1、Smad3、血小板衍生生長因子(platelet-derived growth factor,PDGF)、丙二醛、IL-1β、IL-6、一氧化氮因子水平,故阿那曲唑聯(lián)合放療可能通過TGF-β/Smad3及TGF-β/PDGF途徑減輕放療誘導(dǎo)的肺毒性[75]。Altinok等[76]亦在Wistar白化大鼠模型中證實(shí),放療聯(lián)合他莫昔芬較單純放療提高肺纖維化程度;而放療聯(lián)合芳香化酶抑制劑內(nèi)分泌治療(來曲唑或阿那曲唑或依西美坦)的肺纖維化程度明顯低于單純放療或放療聯(lián)合他莫昔芬組,且與基線組(未放療、無內(nèi)分泌治療)肺纖維化程度無明顯差異。日本近年的一項(xiàng)全國性研究顯示,放療同時(shí)或序貫內(nèi)分泌治療,無論是他莫昔芬或芳香化酶抑制劑,嚴(yán)重肺并發(fā)癥(如需要住院的放射性肺炎、重癥監(jiān)護(hù)等)的發(fā)生率無明顯差異[77]。乳腺癌治療過程中的多種化療及內(nèi)分泌治療藥物,可加重或減輕RILI的發(fā)生風(fēng)險(xiǎn)或嚴(yán)重程度,更多的隨訪性研究有利于明確肺損傷的治療相關(guān)因素,便于今后對(duì)乳腺癌患者抗腫瘤治療過程的肺保護(hù)提出個(gè)體化的干預(yù)意見。
4" 展望
乳腺癌放療后嚴(yán)重RILI發(fā)生率較之其他胸部腫瘤并不高,但乳腺癌患者生存期長,故進(jìn)一步限制抗腫瘤治療過程中的肺損傷相關(guān)因素,加強(qiáng)放療過程中的肺保護(hù),一直是臨床研究的熱點(diǎn)。期待更多的隨訪性研究結(jié)果,有助于未來在臨床中能對(duì)乳腺癌患者提出個(gè)體化的肺損傷預(yù)測及保護(hù)建議。
[參考文獻(xiàn)]
[1]" Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53.
[2]" Early Breast Cancer Trialists′ Collaborative Group (EBCTCG). Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials[J]. Lancet, 2011, 378(9804): 1707-1716.
[3]" EBCTCG (Early Breast Cancer Trialists′ Collaborative Group). Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials[J]. Lancet, 2014, 383(9935): 2127-2135.
[4]" Karlsen J, Tandstad T, Sowa P, et al. Pneumonitis and fibrosis after breast cancer radiotherapy: occurrence and treatment-related predictors[J]. Acta Oncol, 2021, 60(12): 1651-1658.
[5]" Karlsen J, Tandstad T, Steinshamn S, et al. Pulmonary function and lung fibrosis up to 12 years after breast cancer radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2024, 118(4): 1066-1077.
[6]" Ksmann L, Dietrich A, Staab-Weijnitz CA, et al. Radiation-induced lung toxicity—cellular and molecular mechanisms of pathogenesis, management, and literature review[J]. Radiat Oncol, 2020, 15(1): 214.
[7]" Rahi MS, Parekh J, Pednekar P, et al. Radiation-induced lung injury-current perspectives and management[J]. Clin Pract, 2021, 11(3): 410-429.
[8]" McKenzie E, Razvi Y, Wronski M, et al. Trends and correlates of mean lung dose in patients receiving breast radiotherapy in a single institution from 2014 to 2018[J]. Clin Oncol (R Coll Radiol), 2020, 32(10): 647-655.
[9]" Avanzo M, Barbiero S, Trovo M, et al. Voxel-by-voxel correlation between radiologically radiation induced lung injury and dose after image-guided, intensity modulated radiotherapy for lung tumors[J]. Phys Med, 2017, 42: 150-156.
[10]" 喻潔, 李卿, 曾道林, 等. 乳腺癌改良根治術(shù)后內(nèi)乳淋巴結(jié)放療患者VMAT與IMRT計(jì)劃劑量學(xué)比較[J]. 中華放射腫瘤學(xué)雜志, 2020, 29(11): 978-981.
[11]" 高艷, 鐘鶴立, 李壯玲, 等. 乳腺癌改良根治術(shù)后容積調(diào)強(qiáng)弧形治療與調(diào)強(qiáng)放療劑量比較的Meta分析[J]. 中華放射腫瘤學(xué)雜志, 2021, 30(11): 1159-1166.
[12]" Cheng HW, Chang CC, Shiau AC, et al. Dosimetric comparison of helical tomotherapy, volumetric-modulated arc therapy, intensity-modulated radiotherapy, and field-in-field technique for synchronous bilateral breast cancer[J]. Med Dosim, 2020, 45(3): 271-277.
[13]" Abdollahi S, Hadizadeh Yazdi MH, Mowlavi AA, et al. A dose planning study for cardiac and lung dose sparing techniques in left breast cancer radiotherapy: Can free breathing helical tomotherapy be considered as an alternative for deep inspiration breath hold?[J]. Tech Innov Patient Support Radiat Oncol, 2023, 25: 100201.
[14]" Sudha SP, Seenisamy R, Bharadhwaj K. Comparison of dosimetric parameters of volumetric modulated arc therapy and three-dimensional conformal radiotherapy in postmastectomy patients with carcinoma breast[J]. J Cancer Res Ther, 2018, 14(5): 1005-1009.
[15]" Kim SJ, Lee MJ, Youn SM. Radiation therapy of synchronous bilateral breast carcinoma (SBBC) using multiple techniques[J]. Med Dosim, 2018, 43(1): 55-68.
[16]" Becker SJ, Elliston C, Dewyngaert K, et al. Breast radiotherapy in the prone position primarily reduces the maximum out-of-field measured dose to the ipsilateral lung[J]. Med Phys, 2012, 39(5): 2417-2423.
[17]" Kourinou KM, Mazonakis M, Lyraraki E, et al. Scattered dose to radiosensitive organs and associated risk for cancer development from head and neck radiotherapy in pediatric patients[J]. Phys Med, 2013, 29(6): 650-655.
[18]" Kry SF, Salehpour M, Followill DS, et al. The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2005, 62(4): 1195-1203.
[19]" Haciislamoglu E, Cinar Y, Gurcan F, et al. Secondary cancer risk after whole-breast radiation therapy: field-in-field versus intensity modulated radiation therapy versus volumetric modulated arc therapy[J]. Br J Radiol, 2019, 92(1102): 20190317.
[20]" Fogliata A, De Rose F, Franceschini D, et al. Critical appraisal of the risk of secondary cancer induction from breast radiation therapy with volumetric modulated arc therapy relative to 3D conformal therapy[J]. Int J Radiat Oncol Biol Phys, 2018, 100(3): 785-793.
[21]" Bartolucci L, Adrien C, Goudjil F, et al. Dosimetric comparison of four high performance techniques for irradiation of breast cancer patients[J]. Cancer Radiother, 2021, 25(3): 254-258.
[22]" Santos AMC, Kotsanis A, Cunningham L, et al. Estimating the second primary cancer risk due to proton therapy compared to hybrid IMRT for left sided breast cancer[J]. Acta Oncol, 2021, 60(3): 300-304.
[23]" Speleers BA, Belosi FM, De Gersem WR, et al. Comparison of supine or prone crawl photon or proton breast and regional lymph node radiation therapy including the internal mammary chain[J]. Sci Rep, 2019, 9(1): 4755.
[24]" Verma V, Vicini F, Tendulkar RD, et al. Role of internal mammary node radiation as a part of modern breast cancer radiation therapy: a systematic review[J]. Int J Radiat Oncol Biol Phys, 2016, 95(2): 617-631.
[25]" Dasu A, Flejmer AM, Edvardsson A, et al. Normal tissue sparing potential of scanned proton beams with and without respiratory gating for the treatment of internal mammary nodes in breast cancer radiotherapy[J]. Phys Med, 2018, 52: 81-85.
[26]" Lee HL, Lim LH, Master Z, et al. The role of breath hold intensity modulated proton therapy for a case of left-sided breast cancer with IMN involvement. How protons compare with other conformal techniques?[J]. Tech Innov Patient Support Radiat Oncol, 2020, 15: 1-5.
[27]" Austin AM, Douglass MJJ, Nguyen GT, et al. Individualised selection of left-sided breast cancer patients for proton therapy based on cost-effectiveness[J]. J Med Radiat Sci, 2021, 68(1): 44-51.
[28]" Lai J, Hu S, Luo Y, et al. Meta-analysis of deep inspiration breath hold (DIBH) versus free breathing (FB) in postoperative radiotherapy for left-side breast cancer[J]. Breast Cancer, 2020, 27(2): 299-307.
[29]" Lu Y, Yang D, Zhang X, et al. Comparison of deep inspiration breath hold versus free breathing in radiotherapy for left sided breast cancer[J]. Front Oncol, 2022, 12: 845037.
[30]" 胡皓, 李敏兒, 肖光莉. 深吸氣屏氣技術(shù)在左側(cè)乳腺癌術(shù)后放療中的應(yīng)用[J]. 現(xiàn)代腫瘤醫(yī)學(xué), 2020, 28(13): 2318-2322.
[31]" 唐成瓊, 吳恒, 艾秀清, 等. 左側(cè)乳腺癌保留乳房術(shù)后調(diào)強(qiáng)放療兩種呼吸模式劑量學(xué)研究[J]. 中華腫瘤防治雜志, 2019, 26(19): 1462-1467.
[32]" Goyal U, Saboda K, Roe D, et al. Prone positioning with deep inspiration breath hold for left breast radiotherapy[J]. Clin Breast Cancer, 2021, 21(4): e295-e301.
[33]" Oechsner M, Düsberg M, Borm KJ, et al. Deep inspiration breath-hold for left-sided breast irradiation: Analysis of dose-mass histograms and the impact of lung expansion[J]. Radiat Oncol, 2019, 14(1): 109.
[34]" Pandeli C, Smyth LML, David S, et al. Dose reduction to organs at risk with deep-inspiration breath-hold during right breast radiotherapy: a treatment planning study[J]. Radiat Oncol, 2019, 14(1): 223.
[35]" Conway JL, Conroy L, Harper L, et al. Deep inspiration breath-hold produces a clinically meaningful reduction in ipsilateral lung dose during locoregional radiation therapy for some women with right-sided breast cancer[J]. Pract Radiat Oncol, 2017, 7(3): 147-153.
[36]" Lawler G, Leech M. Dose sparing potential of deep inspiration breath-hold technique for left breast cancer radiotherapy organs-at-risk[J]. Anticancer Res, 2017, 37(2): 883-890.
[37]" Czeremszyńska B, Drozda S, Górzyński M, et al. Selection of patients with left breast cancer for deep-inspiration breath-hold radiotherapy technique: Results of a prospective study[J]. Rep Pract Oncol Radiother, 2017, 22(5): 341-348.
[38]" S Nair S, Devi VNM, Sharan K, et al. A dosimetric study comparing different radiotherapy planning techniques with and without deep inspiratory breath hold for breast cancer[J]. Cancer Manag Res, 2022, 14: 3581-3587.
[39]" Matsumoto Y, Kunieda E, Futakami N, et al. Dose and organ displacement comparisons with breast conservative radiotherapy using abdominal and thoracic deep-inspiration breath-holds: A comparative dosimetric study[J]. J Appl Clin Med Phys, 2023, 24(4): e13888.
[40]" Mutu E, Akiba T, Matsumoto Y, et al. Effect on heart and lung doses reduction of abdominal and thoracic deep inspiratory breath-hold assuming involved-field radiation therapy in patients with simulated esophageal cancer[J]. Tokai J Exp Clin Med, 2023, 48(1): 32-37.
[41]" Saini AS, Hwang CS, Biagioli MC, et al. Evaluation of sparing organs at risk (OARs) in left-breast irradiation in the supine and prone positions and with deep inspiration breath-hold[J]. J Appl Clin Med Phys, 2018, 19(4): 195-204.
[42]" Lai J, Zhong F, Deng J, et al. Prone position versus supine position in postoperative radiotherapy for breast cancer: A meta-analysis[J]. Medicine (Baltimore), 2021, 100(20): e26000.
[43]" Yan SX, Maisonet OG, Perez CA, et al. Radiation effect on late cardiopulmonary toxicity: An analysis comparing supine DIBH versus prone techniques for breast treatment[J]. Breast J, 2020, 26(5): 897-903.
[44]" Wang X, Fargier-Bochaton O, Dipasquale G, et al. Is prone free breathing better than supine deep inspiration breath-hold for left whole-breast radiotherapy? A dosimetric analysis[J]. Strahlenther Onkol, 2021, 197(4): 317-331.
[45]" Schoepen M, Speleers B, De Neve W, et al. Four irradiation and three positioning techniques for whole-breast radiotherapy: Is sophisticated always better?[J]. J Appl Clin Med Phys, 2022, 23(11): e13720.
[46]" Wang W, Bin LJ, Hu HG, et al. Evaluation of dosimetric variance in whole breast forward-planned intensity-modulated radiotherapy based on 4DCT and 3DCT[J]. J Radiat Res, 2013, 54(4): 755-761.
[47]" Guo B, Li JB, Wang W, et al. A comparison of dosimetric variance for external-beam partial breast irradiation using three-dimensional and four-dimensional computed tomography[J]. Onco Targets Ther, 2016, 9: 1857-1863.
[48]" Yan Y, Lu Z, Liu Z, et al. Dosimetric comparison between three- and four-dimensional computerised tomography radiotherapy for breast cancer[J]. Oncol Lett, 2019, 18(2): 1800-1814.
[49]" Chau OW, Fakir H, Lock M, et al. Dosimetric planning comparison for left-sided breast cancer radiotherapy: the clinical feasibility of four-dimensional-computed tomography-based treatment planning optimization[J]. Cureus, 2022, 14(5): e24777.
[50]nbsp; Blom Goldman U, Svane G, Anderson M, et al. Long-term functional and radiological pulmonary changes after radiation therapy for breast cancer[J]. Acta Oncol, 2014, 53(10): 1373-1379.
[51]" Snchez-Nieto B, Goset KC, Caviedes I, et al. Predictive models for pulmonary function changes after radiotherapy for breast cancer and lymphoma[J]. Int J Radiat Oncol Biol Phys, 2012, 82(2): e257-264.
[52]" Zhou ZR, Han Q, Liang SX, et al. Dosimetric factors and Lyman normal-tissue complication modelling analysis for predicting radiation-induced lung injury in postoperative breast cancer radiotherapy: a prospective study[J]. Oncotarget, 2017, 8(20): 33855-33863.
[53]" Verbanck S, Van Parijs H, Schuermans D, et al. Lung restriction in patients with breast cancer after hypofractionated and conventional radiation therapy: a 10-year follow-up[J]. Int J Radiat Oncol Biol Phys, 2022, 113(3): 561-569.
[54]" Yilmaz U, Koylu M, Savas R, et al. Imaging features of radiation-induced lung disease and its relationship with clinical and dosimetric factors in breast cancer patients[J]. J Cancer Res Ther, 2023, 19(Supplement): S0.
[55]" Ozgen Z, Orun O, Atasoy BM, et al. Radiation pneumonitis in relation to pulmonary function, dosimetric factors, TGFβ1 expression, and quality of life in breast cancer patients receiving post-operative radiotherapy: a prospective 6-month follow-up study[J]. Clin Transl Oncol, 2023, 25(5): 1287-1296.
[56]" Kundrt P, Rennau H, Remmele J, et al. Anatomy-dependent lung doses from 3D-conformal breast-cancer radiotherapy[J]. Sci Rep, 2022, 12(1): 10909.
[57]" Ma L, Yang Y, Ma J, et al. Correlation between AI-based CT organ features and normal lung dose in adjuvant radiotherapy following breast-conserving surgery: a multicenter prospective study[J]. BMC Cancer, 2023, 23(1): 1085.
[58]" Giuranno L, Ient J, De Ruysscher D, et al. Radiation-induced lung injury (RILI)[J]. Front Oncol, 2019, 9: 877.
[59]" Vujaskovic Z, Feng QF, Rabbani ZN, et al. Assessment of the protective effect of amifostine on radiation-induced pulmonary toxicity[J]. Exp Lung Res, 2002, 28(7): 577-590.
[60]" Sasse AD, Clark LG, Sasse EC, et al. Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis[J]. Int J Radiat Oncol Biol Phys, 2006, 64(3): 784-791.
[61]" Kma L, Gao F, Fish BL, et al. Angiotensin converting enzyme inhibitors mitigate collagen synthesis induced by a single dose of radiation to the whole thorax[J]. J Radiat Res, 2012, 53(1): 10-17.
[62]" Bracci S, Valeriani M, Agolli L, et al. Renin-angiotensin system inhibitors might help to reduce the development of symptomatic radiation pneumonitis after stereotactic body radiotherapy for lung cancer[J]. Clin Lung Cancer, 2016, 17(3): 189-197.
[63]" Alite F, Balasubramanian N, Adams W, et al. Decreased risk of radiation pneumonitis with coincident concurrent use of angiotensin-converting enzyme inhibitors in patients receiving lung stereotactic body radiation therapy[J]. Am J Clin Oncol, 2018, 41(6): 576-580.
[64]" Sio TT, Atherton PJ, Pederson LD, et al. Daily lisinopril vs placebo for prevention of chemoradiation-induced pulmonary distress in patients with lung cancer (Alliance MC1221): a pilot double-blind randomized trial[J]. Int J Radiat Oncol Biol Phys, 2019, 103(3): 686-696.
[65]" Sun Y, Du YJ, Zhao H, et al. Protective effects of ulinastatin and methylprednisolone against radiation-induced lung injury in mice[J]. J Radiat Res, 2016, 57(5): 505-511.
[66]" Li D, Ji H, Zhao B, et al. Therapeutic effect of ulinastatin on pulmonary fibrosis via downregulation of TGF-β1, TNF-α and NF-κB[J]. Mol Med Rep, 2018, 17(1): 1717-1723.
[67]" Tang F, Li R, Xue J, et al. Azithromycin attenuates acute radiation-induced lung injury in mice[J]. Oncol Lett, 2017, 14(5): 5211-5220.
[68]" Azmoonfar R, Amini P, Saffar H, et al. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression[J]. Adv Pharm Bull, 2018, 8(4): 697-704.
[69]" Ying H, Fang M, Hang QQ, et al. Pirfenidone modulates macrophage polarization and ameliorates radiation-induced lung fibrosis by inhibiting the TGF-β1/Smad3 pathway[J]. J Cell Mol Med, 2021, 25(18): 8662-8675.
[70]" Chen C, Zeng B, Xue D, et al. Pirfenidone for the prevention of radiation-induced lung injury in patients with locally advanced oesophageal squamous cell carcinoma: a protocol for a randomised controlled trial[J]. BMJ Open, 2022, 12(10): e060619.
[71]" Rimner A, Moore ZR, Lobaugh S, et al. Randomized phase 2 placebo-controlled trial of nintedanib for the treatment of radiation pneumonitis[J]. Int J Radiat Oncol Biol Phys, 2023, 116(5): 1091-1099.
[72]" Yu TK, Whitman GJ, Thames HD, et al. Clinically relevant pneumonitis after sequential paclitaxel-based chemotherapy and radiotherapy in breast cancer patients[J]. J Natl Cancer Inst, 2004, 96(22): 1676-1681.
[73]" Bielopolski D, Evron E, Moreh-Rahav O, et al. Paclitaxel-induced pneumonitis in patients with breast cancer: case series and review of the literature[J]. J Chemother, 2017, 29(2): 113-117.
[74]" Varga Z, Cserhti A, Kelemen G, et al. Role of systemic therapy in the development of lung sequelae after conformal radiotherapy in breast cancer patients[J]. Int J Radiat Oncol Biol Phys, 2011, 80(4): 1109-1116.
[75]" Elkiki SM, Mansour HH, Anis LM, et al. Evaluation of aromatase inhibitor on radiation induced pulmonary fibrosis via TGF-β/Smad3 and TGF-β/PDGF pathways in rats[J]. Toxicol Mech Methods, 2021, 31(7): 538-545.
[76]" Altinok AY, Yildirim S, Altug T, et al. Aromatase inhibitors decrease radiation-induced lung fibrosis: Results of an experimental study[J]. Breast, 2016, 28: 174-177.
[77]" Konishi T, Fujiogi M, Michihata N, et al. Interstitial lung disorders following postoperative radiotherapy with concurrent or sequential hormonal therapy for breast cancer: a nationwide database study in Japan[J]. Breast Cancer, 2022, 29(4): 688-697.
[收稿日期]" 2023-12-20" [編輯]" 何承志
江蘇大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2024年5期