999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

腸道微生物定植抗性影響B族鏈球菌定植的研究進展

2024-12-31 00:00:00朱靚?歐陽譚亮?李云鶴?鐘櫻?薛云新?王岱
中國抗生素雜志 2024年8期

摘要:B族鏈球菌(group B Streptococcus, GBS)可導致孕婦早產、宮內感染和新生兒化膿性腦膜炎、敗血癥和肺炎等多種疾病甚至死亡。美國疾病預防控制中心指南建議所有孕產婦在孕35~37周應進行GBS篩查,對檢測陽性的孕產婦進行產時抗生素預防。使用抗生素會對人體產生副作用且無法預防GBS遲發性感染,隨著細菌抗生素耐藥逐年嚴重,探索成本更低、更有效的預防GBS定植感染措施尤為重要。GBS是一種可通過食物傳播的人畜共患病病原體,研究其在腸道中的定植至關重要。腸道內共生細菌可通過腸道定植抗性機制抑制腸道病原體的定植和擴張,減少腸道GBS逆行性感染生殖道的風險,具有成為防治GBS的一級預防措施的潛力。本文著重探討腸道定植抗性對GBS定植感染的影響,以及基于此的益生菌應用。

關鍵詞:GBS;抗生素耐藥;腸道定植抗性;益生菌

中圖分類號:Q932,R978.1" " "文獻標志碼:A

A new advance in intestinal microbial colonization resistance affecting group B Streptococcus colonization

Abstract Group B Streptococcus (GBS) can cause premature birth, intrauterine infection in pregnant women, suppurative meningitis, septicemia, pneumonia in newborns and even death. The U.S. Centers for Disease Control and Prevention recommend that all pregnant women should be screened for GBS at 35~37 weeks of gestation, and those who test positive should be given intrauterine antibiotic prophylaxis (IAP). Antibiotics can cause side effects and do not prevent GBS, a late-onset disease. With the increasing antibiotic resistance of bacteria, it is particularly important to explore more effective and cost-effective measures to prevent GBS colonized infections. GBS is a zoonotic pathogen that can be transmitted through food, and it is important to study its colonization in the gut. Intestinal symbiotic bacteria can inhibit the colonization and expansion of intestinal pathogens through an intestinal colonization resistance mechanism, and reduce the risk of retrograde infection of the reproductive tract by GBS. It has the potential to be a primary prevention measure against GBS. This paper focused on the effect of intestinal colonization resistance on GBS colonization infection and the application of probiotics based on this.

Key words GBS; Antibiotic resistance; Intestinal colonization resistance; Probiotics

20世紀30年代,B族鏈球菌(group B Streptococcus, GBS)由Rebecca Lancefield分離自患牛乳腺炎的奶牛,又得名無乳鏈球菌(Streptococcus agalactiae),是一種兼性厭氧的革蘭陽性球菌[1]。垂直傳播是GBS的主要傳播途徑,同時GBS也可以食源性傳播。作為一種人畜共患病原體,它被報道在東南亞多地引起食源性侵襲感染[2-6]。GBS可間斷性、一過性或持續性定植于人體消化道和生殖道,健康人GBS攜帶率可達15%~35%[7]。同時,GBS是1種具有多種毒力因子的條件致病菌,當宿主免疫反應減弱或在特定環境條件下,毒力因子被激發協同作用于機體,以幫助其實現黏附定植、激發炎癥和干擾宿主細胞信號傳導,從定植狀態發展為引起侵襲性疾病[8]。根據莢膜抗原性將GBS分為Ⅰa、Ⅰb及Ⅱ~Ⅸ共10種血清型[1,9]。盡管全球各國流行血清型分布有一定的差異,但引起GBS疾病的主要血清型主要為Ⅲ、Ⅰa、Ⅰb、Ⅱ和Ⅴ 5個血清型,可引起 90%以上的嬰幼兒患侵襲性疾病[10]。

育齡期婦女的陰道、腸道和尿道內攜帶GBS是十分常見的。研究表明,中國孕婦生殖道的GBS定植率在20%左右,而在歐美國家,這一定植率高達40%~50%[11]。美國疾病預防控制中心指南推薦采集妊娠35~37周孕婦的陰道和直腸標本進行GBS篩查[10,12-13]。女性的生理結構使得直腸和泌尿生殖道較為接近,目前已有證據指出腸道-陰道微生物群串擾[13],成人尤其是育齡期婦女腸道GBS定植應該受到高度重視[14]。

腸道微生物群是一個由數萬億種微生物組成的動態而多樣化的生態系統,執行代謝調節、營養消化、免疫反應調節等各種活動[15]。腸道微生物群具有抑制腸道病原體定植和擴張的能力,這種特性被稱為定植抗性(colonization resistance),這是健康微生物群一個重要的功能[16]。定植抗性的機制尚未完全闡明,一般來說,腸道微生物群通過直接和間接作用機制增強對腸道病原體的定植抗性,前者又稱微生物群特異性定植抗性機制,是指微生物群可通過競爭腸道內資源、產生抑制性化合物來促進直接的定植抗性;間接作用是指共生細菌通過調節腸道屏障、增強宿主腸道先天免疫等方式間接控制入侵病原體[17]。本文著重探討腸道定植抗性對GBS定植感染的影響,以及基于此的益生菌應用。

1 GBS的危害

1.1 GBS對孕婦的危害

正常情況下GBS與生殖道內其他菌群之間相互競爭制約,并不致病。而處于妊娠期的孕婦體內雌性激素升高,會導致一些定植條件致病菌轉為活躍的致病菌,影響陰道微生態平衡。有研究表明年齡≥35歲、有流產史、妊娠糖尿病、陰道清潔度Ⅲ/Ⅳ級、CRP≥60 mg/L等是妊娠晚期孕婦GBS定植的高危影響因素,這些影響因素會導致其生殖道微環境受到不同程度的破壞,目前已有證據指出腸道-陰道微生物群串擾,泌尿生殖道對病原菌的抵抗力降低會增加GBS逆行性感染的風險[14]。

由于妊娠后期婦女免疫功能下降、陰道微環境失調,致病菌可上行感染妊娠子宮及胎膜,GBS產生的蛋白水解酶可直接吞噬胎膜,導致胎膜早破;GBS可以刺激子宮明顯收縮,導致早產。此外GBS可持續上行感染至宮內,導致孕婦產后子宮張力增加、產后出血風險上升,危及孕產婦生命。總之,GBS感染可引起早產、產后出血、胎膜早破、宮內感染和產褥期感染等多種不良妊娠結局,臨床應重視圍產期婦女GBS感染管理,采取早期篩查和預防等措施,降低圍產期婦女GBS感染的風險及其對新生兒的影響[18-19]。

1.2 GBS對新生兒的危害

GBS導致的嚴重新生兒感染引起社會的廣泛關注,大多數GBS感染是通過母親垂直傳播的,分娩過程中GBS陰道垂直傳播率為45.2%,剖宮產時為25.9%[20]。新生兒的GBS疾病可以根據發病時間進行分類:GBS早發性疾病(early-onset GBS disease, GBS-EOD)較為常見,發生在出生后的7 d內,母體生殖道和胃腸道內GBS定植是其主要危險因素。大多數GBS-EOD是由定植在母親陰道中的GBS通過上行感染或在分娩過程中羊水吸入、胎盤傳遞或經由產道傳給新生兒導致的,約50%的GBS定植孕婦會將細菌傳播給新生兒,由于新生兒免疫力低下,1%~2%的新生兒會出現GBS-EOD,主要引起患兒化膿性腦膜炎、敗血癥或肺炎等嚴重疾病,一旦發生早發性感染,新生兒死亡率可高達50%,是新生兒出生后第一周發病和死亡的重要原因[21-22]。

GBS遲發性感染(late-onset GBS disease, GBS-LOD)通常是母乳或環境中的GBS感染新生兒,發生在出生后7 d至3個月[23]。GBS通過消化道定植進入新生兒血液循環后可侵入腦上皮,主要臨床表現為敗血癥,40%患兒伴有腦膜炎。但GBS-LOD病情進展迅速,可能出現突然暴發,在數小時內發展為中毒性休克、抽搐,死亡率極高,目前尚無合適的預防GBS-LOD的方法[9]。GBS仍是新生兒細菌感染的重要病原體之一,也是新生兒肺炎死亡的主要原因。

2 GBS的抗生素預防、治療及耐藥

自20世紀70年代以來,西方國家高度重視圍產期孕婦GBS的防治。GBS作為條件致病菌在非妊娠成人的生殖道或腸道中定植時可不治療。但對孕晚期GBS篩查陽性的孕婦,通過產時抗生素預防(intrapartum antibiotic prophylaxis, IAP)進行GBS-EOD一級預防具有重要意義,首選靜脈注射青霉素藥物,其次可考慮靜脈注射氨芐西林。青霉素過敏、過敏反應風險低或嚴重程度不確定的孕婦可使用第一代頭孢菌素。對于過敏反應高風險的孕婦,僅當GBS藥敏結果顯示對克林霉素敏感時,才可使用克林霉素替代青霉素。對于青霉素過敏高風險且其GBS分離株對克林霉素不敏感的孕婦,可考慮靜脈注射萬古霉素[10]。

GBS-LOD是新生兒敗血癥的常見原因,當懷疑新生兒敗血癥時的初始經驗性治療是使用具有抗GBS活性的氨芐西林和慶大霉素,但使用這兩種藥物具有耳毒性和腎毒性等副作用[24]。對于新生兒GBS感染的治療,抗生素的選擇、持續時間和安全性一直備受爭議,許多回顧性研究的數據表明,長期的初始經驗性抗生素治療可能容易導致早產兒的不良結局[25-27]。即使GBS感染被治愈,仍有25%~35%的兒童可能出現聽力障礙、視力障礙、發育遲緩或腦癱等永久性神經損傷的后遺癥[28]。

近年來,臨床上大量不合理使用抗生素造成了GBS耐藥現象,例如GBS對大環內酯類耐藥嚴重,特別是阿奇霉素和羅紅霉素均達到100%耐藥,多重耐藥現象也越來越普遍[29]。不僅如此,抗生素的使用會對人體產生副作用,例如女性過敏反應[30]、孕婦肥胖和糖尿病[31]、新生兒腸道微生物組的變化、新生兒過敏以及早產兒的遲發性感染等,且IAP并不能預防7~89日齡嬰兒的GBS-LOD。因此,歐美GBS預防指南嚴格限制IAP的適應癥,減少GBS垂直傳播的重點放在非抗生素的方式的研發上[32]。

3 腸道定植抗性

3.1 微生物群特異性定植抗性機制

定植抗性的直接機制的特征在于共生微生物群通過細菌因素,限制外源性病原菌定植或防止本土微生物的致病性過度生長。直接機制發生在細菌之間,細菌通過競爭資源(“剝削性”競爭營養和生存空間)或產生抑制性化合物(如細菌素、短鏈脂肪酸)直接抑制病原菌的生長,而宿主充當發生競爭的環境[33-34]。

營養競爭是腸道群落組成和定植抵抗力的重要決定因素。在腸道環境中,微生物群與病原體爭奪腸道中的營養物質以維持自身和種群發展,尤其是同一種屬的細菌種群通常需要相似的營養物質,其營養競爭更為激烈[35]。關于營養競爭拮抗GBS的研究較少,本文主要討論現有研究較多、更受關注的細菌素和脂肪酸對GBS生長定植的抑制作用。

3.1.1 細菌素

細菌素是細菌產生的1種具有抑菌或殺菌活性的短肽分子,通常可通過在細菌細胞膜形成孔隙、干擾RNA和DNA代謝來殺死細菌[36]。革蘭陽性細菌的細菌素主要由乳酸菌(例如乳球菌和乳酸桿菌)和一些鏈球菌產生[37]。乳酸菌是腸道及陰道的正常菌群之一,不僅可以通過產生過氧化氫和乳酸來抑制GBS生長,一些乳酸菌屬成員可以產生乳酸菌素,乳酸菌素可抑制多種革蘭陽性細菌,其與紅霉素可以協同作用,抑制GBS的生長[38]。研究表明乳酸菌素與萬古霉素使用相同靶標:細胞壁前體脂質II,乳酸菌素與脂質II的高親和力結合可導致細菌細胞壁形成孔、肽聚糖層暴露,納摩爾水平乳酸菌素即可對革蘭陽性細菌有殺菌活性[39]。Malgorzata的體外研究表明植物乳桿菌C11可分泌植物乳桿菌素E、F、J和K,其去除過氧化氫和乳酸的培養上清對主要致病血清型的GBS有強抑制作用[40]。Ruíz等[41]從陰道中分離發酵乳桿菌、鼠李糖乳桿菌,發現兩者的細菌素樣抑制物質可對GBS的生長產生協同抑制活性。

除了乳酸菌屬的乳酸菌素,益生菌腸球菌對GBS也有拮抗活性,腸球菌素A和B對GBS拮抗活性[42]。唾液鏈球菌K12產生唾液素A和唾液素B可降低體外GBS生長,唾液鏈球菌給藥可降低小鼠模型中GBS陰道定植持久性[43]。此外,一些病原菌也可產生細菌素,抑制GBS生長,但考慮安全性無法作為益生菌使用[44]。目前抗生素弊端明顯,細菌素是極具潛力的抗菌劑,值得被進一步地關注和探索[45]。

3.1.2 脂肪酸

短鏈脂肪酸(short chain fatty acids, SCFAs)是由腸道微生物群厭氧發酵膳食纖維和抗性淀粉產生。乙酸鹽、丙酸鹽和丁酸鹽是3種最主要的SCFA,占SCFAs池90%以上[46]。雙歧桿菌作為一種已廣泛應用的益生菌,可產生豐富的SCFAs抑制GBS生長[47]。結腸中丁酸梭菌可利用膳食纖維和抗性淀粉產生豐富的丁酸,有研究表明,產前每日口服丁酸梭菌的孕婦,陰道和直腸GBS陽性率更低[48]。此外,腸道中除了SCFAs外還存在對腸道健康十分重要的乳酸。乳酸桿菌大量產生的乳酸,具有抑制GBS生長和黏附的功能,作為一種酸性物質,可降低pH導致細菌內質子積累以抑制病原菌[49],但是GBS可以通過一系列不同的防御機制來應對低pH值,如質子泵、增加菌體內堿性化合物來誘導緩沖效應等。有研究表明,乳酸的抑菌作用比鹽酸更優,能夠產生最高乳酸水平的乳酸桿菌菌株對GBS的拮抗作用最高[50-51]。總之,SCFAs對于GBS的抑制不僅通過降低pH,其具體機制仍待研究。

3.2 間接定植抵抗機制

除直接競爭和產生抑制性化合物外,腸道微生物群還可以通過增強腸黏膜屏障和免疫系統來間接調節定植抗性,其特征在于微生物群依賴于宿主衍生因子,以提供針對外源性病原體的保護。腸道益生菌可以刺激先天免疫反應,幫助腸道免疫系統成熟,從而預防腸道疾病[17, 52]。

3.2.1 腸道屏障的調節

條件致病菌GBS黏附定植于腸上皮細胞(intestinal epithelial cell, IEC)表面是其侵襲宿主屏障并感染致病的關鍵過程,介導GBS與腸道上皮細胞相互作用的主要黏附素包括纖維蛋白原結合蛋白、層粘連蛋白結合蛋白、B族鏈球菌C5a肽酶,這些也是其主要毒力因子[53-54]。GBS黏附腸道上皮細胞需要突破腸道黏液層[55]。結腸黏液屏障主要成分為杯狀細胞分泌的黏蛋白(mucoprotein, MUC)、水、無機鹽、抗菌肽等,分為物理性質不同的兩層黏液:黏附于腸上皮細胞的致密層作為屏障將腸道微生物與IEC和免疫細胞隔離開;靠近腸腔側的黏膜疏松層較厚,是大量腸道微生物的生存位點,這些黏附位點數量是一定的,益生菌可通過與GBS等病原菌競爭該位點來實現對宿主的保護作用[49,56]。

近年來研究表明,益生菌在腸道屏障調節中起關鍵作用,腸道屏障防御力越強、炎癥越少越有益于對GBS的定植抗性。部分乳酸桿菌如鼠李糖乳桿菌、植物乳桿菌等,被證明可以增加人腸道細胞系Caco-2和HT29中的MUC表達,維持腸黏膜的完整性[57];并且乳酸桿菌還可以上調IEC中鈣黏蛋白E和緊密連接(tight junction, TJ)的表達,競爭性地抑制細菌與TJs的結合,從而抑制感染誘導的腸道通透性增加,減輕炎癥,保護腸道屏障功能[58-59]。

SCFAs在調節上皮屏障完整性方面也有重要作用。SCFAs可通過被動擴散至細胞中,對細胞增殖、分化和基因表達等過程產生直接或間接的影響[60],雙歧桿菌可在結腸中產生乙酸鹽,乙酸鹽可促進腸上皮中抗炎和抗凋亡基因的表達,增強上皮屏障的完整性。丁酸作為結腸細胞的主要能量來源,能滋養腸上皮細胞,促進IEC的生成MUC,增強TJs的強度[60-62]。短鏈脂肪酸可維持腸上皮完整性,防止GBS和脂多糖滲漏到體循環向子宮、胎盤或羊膜腔的血行擴散,從而防止脂多糖誘導的炎癥介質和前列腺素的產生,妊娠期間腸道短鏈脂肪酸升高可能會遠程降低與感染炎癥相關的自發性早產的風險[63]。這些研究表明益生菌可以促進MUC的分泌、增加相鄰上皮細胞間的TJs,對腸道屏障進行正向調節以幫助減少病原菌如GBS的侵襲和黏附。

3.2.2 免疫調節

益生菌細胞壁成分(如脂多糖、肽聚糖和β-葡聚糖)可以刺激和訓練宿主的免疫,調節腸道黏膜免疫系統以促進宿主抵御GBS侵襲[64]。IEC和Paneth細胞產生的抗菌肽是腸道黏膜免疫的重要成分,主要是利用細菌和真核細胞膜的差異,選擇性地靶向細菌細胞膜和肽聚糖層,破壞其完整性,達到抗菌效果[56]。羅伊氏乳桿菌可激活Wnt/β-連環蛋白途徑,導致抗菌肽的表達增加[65]。De Gregorio等[66]的研究表明在GBS感染之前用羅伊氏乳桿菌CRL1324接種小鼠可減少病原體誘導的中性粒細胞的數量并增加活化的巨噬細胞數量;在感染GBS前接種CRL1324,感染后B淋巴細胞以及IgA和IgG亞類增加。

益生菌產生的SCFAs在調節免疫系統和炎癥反應中具有重要作用,SCFAs可刺激IEC產生抗菌肽(例如β-防御素和REG3γ)來維持腸道穩態[60]。研究發現,SCFAs有助于提高結腸調節性T細胞的活性,從而減輕腸道局部炎癥[46]。丁酸鹽可以增加結腸抗炎細胞因子IL-10的水平,降低促炎細胞因子IL-6和IL-1β的水平[61]。

3.3 抗生素對定植抗性的影響

在抗擊傳染病的斗爭中,抗生素用于預防和治療各種細菌感染性疾病,挽救了無數生命。但過度使用和長期使用抗生素可能產生不良影響,包括微生物物種和數量的改變、細菌抗生素耐藥、腸道黏液層和TJs被破壞等,可能會降低腸道對致病菌的定植抗性,導致致病菌在腸道中的過量增殖[67]。據報道,靜脈注射抗生素可能導致GBS和其他致病細菌產生耐藥性,并且會破壞新生兒腸道菌群[50],抗生素治療后兒童微生物多樣性的恢復大約需要1個月。慶大霉素、美羅培南和萬古霉素給藥會降低成人腸道益生菌雙歧桿菌的數量[33]。腸道微生物組成的改變、對GBS定植抗性的降低,會增加GBS感染的易感性和再次感染的風險。

4 益生菌應用

對宿主健康有益的活體微生物稱為益生菌,又稱為微生態制劑。益生菌屬于環境中的正常菌群,可通過腸道定植抗性調節腸道內菌群平衡,防止腸道內病原菌過度生長,達到防治疾病的目的。目前已有研究發現口服益生菌可以改變陰道菌群[48,68],口服一些乳桿菌如唾液乳桿菌[69]、鼠李糖乳桿菌和羅伊氏乳桿菌[70]等可減少妊娠期間直腸和陰道GBS陽性孕婦的數量,減少了分娩期間接受抗生素治療的孕婦人數;一些益生菌如乳酸桿菌、雙歧桿菌、丁酸梭菌等在體外或小鼠模型中具有抑制GBS生長的潛力[42,71-78]。這些研究說明腸道內共生細菌可以通過定植抗性,抑制腸道GBS定植和擴張,減少GBS從腸道向陰道的播種,以降低孕婦妊娠期間直腸和陰道GBS陽性率,減少抗生素使用。目前益生菌制劑有多種形式:熱殺滅益生菌、益生菌的無細菌上清液、純化的特定成分或對益生菌進行基因工程編輯[79]。選擇能夠有效拮抗腸道和泌尿生殖道中的GBS定植并且使用安全的益生菌菌株,可將母胎GBS感染發病風險降至最低,并減少抗生素使用。

5 總結與展望

目前細菌耐藥現象和多重耐藥現象愈加普遍,GBS感染給人類健康尤其是孕產婦及新生兒健康造成巨大疾病負擔。綜上所述,腸道微生物群在維持人體健康方面發揮著十分重要的作用,是腸道定植抗性的核心,起著雙重作用:產生抑制性化合物(細菌素和脂肪酸)直接拮抗GBS生長定植;通過正向調節腸道屏障、競爭黏附位點、刺激并訓練腸道先天免疫系統等機制抑制GBS的黏附侵襲。若能合理利用定植抗性增加腸道對GBS定植的拮抗,可減少人群中尤其是育齡期婦女腸道GBS定植,減少GBS從腸道向生殖道播種擴散的發生,有望從一級預防層面上降低GBS對孕產婦和新生兒生命健康的威脅。腸道微生物群有數百個不同物種的數萬億細菌,這使得研究益生菌在定植抗性中的特定功能十分困難,益生菌和益生元的安全使用與療效探索是目前研究的一大熱點,GBS與腸道微生物相互作用的復雜網絡以及定植抗性的精確機制是未來的研究方向。

參 考 文 獻

Raabe V N, Shane A L. Group B Streptococcus (Streptococcus agalactiae)[J]. Microbiol Spectr, 2019, 7(2):" GPP3-0007-2018.

Barkham T, Sheppard A, Jones N, et al. Streptococcus agalactiae that caused meningitis in healthy adults in 1998 are ST283, the same type that caused a food-borne outbreak of invasive sepsis in 2015: An observational molecular epidemiology study[J]. Clin Microbiol Infect, 2018, 24(8): 923-925.

Kalimuddin S, Chen S L, Lim C T K, et al. 2015 Epidemic of severe Streptococcus agalactiae sequence type 283 infections in Singapore associated with the consumption of raw freshwater fish: A detailed analysis of clinical, epidemiological, and bacterial sequencing data[J]. Clin Infect Dis, 2017, 64(suppl_2): S145-s152.

Luangraj M, Hiestand J, Rasphone O, et al. Invasive Streptococcus agalactiae ST283 infection after fish consumption in two sisters, Lao PDR[J]. Wellcome Open Res, 2022, 7: 148.

Zwe Y H, Goh Z H E, Chau M L, et al. Survival of an emerging foodborne pathogen: Group B Streptococcus (GBS) serotype III sequence type (ST) 283-under simulated partial cooking and gastric fluid conditions[J]. Food Sci Biotechnol, 2019, 28(3): 939-944.

Chau M L, Chen S L, Yap M, et al. Group B Streptococcus infections caused by improper sourcing and handling of fish for raw consumption, singapore, 2015-2016[J]. Emerg Infect Dis, 2017, 23(12): 2002-10.

Graux E, Hites M, Martiny D, et al. Invasive group B Streptococcus among non-pregnant adults in Brussels-Capital Region, 2005-2019[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(3): 515-523.

Wahid H H, Mustapha Rounal P F D, Bahez A, et al. A review of group B Streptococcus (GBS) vaginal colonization and ascending intrauterine infection: Interaction between host immune responses and gbs virulence factors[J]. Acta Scientifica Malaysia, 2022: 17-22.

Liu Y, Liu J. Group B Streptococcus: Virulence factors and pathogenic mechanism[J]. Microorganisms, 2022, 10(12): 2483.

Huang J, Lin X Z, Zhu Y, et al. Epidemiology of group B streptococcal infection in pregnant women and diseased infants in Mainland China[J]. Pediatr Neonatol, 2019, 60(5): 487-495.

Cho C Y, Tang Y H, Chen Y H, et al. Group B streptococcal infection in neonates and colonization in pregnant women: An epidemiological retrospective analysis[J]. J Microbiol Immunol Infect, 2019, 52(2): 265-272.

Ferreira M B, de-Paris F, Paiva R M, et al. Assessment of conventional PCR and real-time PCR compared to the gold standard method for screening Streptococcus agalactiae in pregnant women[J]. Braz J Infect Dis, 2018, 22(6): 449-454.

Brown A P, Denison F C. Selective or universal screening for GBS in pregnancy (review)[J]. Early Hum Dev, 2018, 126: 18-22.

Reid G, Bruce A W. Could probiotics be an option for treating and preventing urogenital infections?[J]. Medscape Womens Health, 2001, 6(5): 9.

Gomaa E Z. Human gut microbiota/microbiome in health and diseases: A review[J]. Antonie van Leeuwenhoek, 2020, 113(12): 2019-2040.

Bron P A, Kleerebezem M, Brummer R J, et al. Can probiotics modulate human disease by impacting intestinal barrier function?[J]. Brit J Nutr, 2017, 117(1): 93-107.

Buffie C G, Pamer E G. Microbiota-mediated colonization resistance against intestinal pathogens[J]. Nat Rev Immun, 2013, 13(11): 790-801.

Gao Y, Shang Q, Wei J, et al. The correlation between vaginal microecological dysbiosis-related diseases and preterm birth: A review[J]. Med Microecol, 2021, 8: 100043.

Yuan X Y, Liu H Z, Liu J F, et al. Pathogenic mechanism, detection methods and clinical significance of group B Streptococcus[J]. Future Microbiol, 2021, 16: 671-685.

Hickman M E, Rench M A, Ferrieri P, et al. Changing epidemiology of group B streptococcal colonization[J]. Pediatrics, 1999, 104(2 Pt 1): 203-209.

Tavares T, Pinho L, Bonifácio Andrade E. Group B streptococcal neonatal meningitis[J]. Clin Microbiol Rev, 2022, 35(2): e0007921.

Zhu Y, Lin X Z. Updates in prevention policies of early-onset group B streptococcal infection in newborns[J]. Pediatr Neonatol, 2021, 62(5): 465-475.

Amabebe E, Anumba D O C. Female gut and genital tract microbiota-induced crosstalk and differential effects of short-chain fatty acids on immune sequelae[J]. Front Immunol, 2020, 11: 2184.

Korang S K, Safi S, Nava C, et al. Antibiotic regimens for early-onset neonatal sepsis[J]. Cochrane Database Syst Rev, 2021, 5(5): Cd013837.

Kuppala V S, Meinzen-Derr J, Morrow A L, et al. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants[J]. J Pediatr, 2011, 159(5): 720-725.

Cotten C M, Taylor S, Stoll B, et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants[J]. Pediatrics, 2009, 123(1): 58-66.

Cordero L, Ayers L W. Duration of empiric antibiotics for suspected early-onset sepsis in extremely low birth weight infants[J]. Infect Control Hosp Epidemiol, 2003, 24(9): 662-666.

Zimmermann P, Gwee A, Curtis N. The controversial role of breast milk in GBS late-onset disease[J]. J Infect, 2017, 74: S34-S40.

Li J, Liu L, Zhang H, et al. Severe problem of macrolides resistance to common pathogens in China[J]. Front Cell Infect Microbiol, 2023, 13: 1181633.

Weiss M E, Adkinson N F. Immediate hypersensitivity reactions to penicillin and related antibiotics[J]. Clin Allergy, 1988, 18(6): 515-540.

Hughes R C E, Williman J A, Gullam J E. Antenatal haemoglobin A1c centiles: Does one size fit all?[J]. Aust N Z J Obstet Gynaecol, 2018, 58(4): 411-416.

Jauréguy F, Carton M, Panel P, et al. Effects of intrapartum penicillin prophylaxis on intestinal bacterial colonization in infants[J]. J Clin Microbiol, 2004, 42(11): 5184-5188.

Shah T, Baloch Z, Shah Z, et al. The intestinal microbiota: impacts of antibiotics therapy, colonization resistance, and diseases[J]. Int J Mol Sci, 2021, 22(12): 6597.

Caballero-Flores G, Pickard J M, Nú?ez G. Microbiota-mediated colonization resistance: Mechanisms and regulation[J]. Nat Rev Microbiol, 2023, 21(6): 347-360.

Zhang Y, Tan P, Zhao Y, et al. Enterotoxigenic Escherichia coli: Intestinal pathogenesis mechanisms and colonization resistance by gut microbiota[J]. Gut Microbes, 2022, 14(1): 2055943.

Cotter P D, Ross R P, Hill C. Bacteriocins - a viable alternative to antibiotics?[J]. Nat Rev Microbiol, 2013, 11(2): 95-105.

Rea M C, Sit C S, Clayton E, et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile[J]. Proceed National Acad Sci, 2010, 107(20): 9352-9357.

Hayes K, Cotter L, O’Halloran F. In vitro synergistic activity of erythromycin and nisin against clinical Group B Streptococcus isolates[J]. J Appl Microbiol, 2019, 127(5): 1381-1390.

Breukink E, Wiedemann I, van Kraaij C, et al. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic[J]. Science, 1999, 286(5448): 2361-2364.

Bodaszewska-Lubas M, Brzychczy-Wloch M, Gosiewski T, et al. Antibacterial activity of selected standard strains of lactic acid bacteria producing bacteriocins-pilot study[J]. Postepy Hig Med Dosw (Online), 2012, 66: 787-794.

Ruíz F O, Gerbaldo G, García M J, et al. Synergistic effect between two bacteriocin-like inhibitory substances produced by Lactobacilli strains with inhibitory activity for Streptococcus agalactiae[J]. Curr Microbiol, 2012, 64(4): 349-356.

Ermolenko E I, Chernysh A, Martsinkovskaia I V, et al. Influence of probiotic enterococci on the growth of Streptococcus agalactiae[J]. Zh Mikrobiol Epidemiol Immunobiol, 2007(5): 73-77.

Shuster K A, Hish G A, Selles L A, et al. Naturally occurring disseminated group B Streptococcus infections in postnatal rats[J]. Comp Med, 2013, 63(1): 55-61.

Mélan?on D, Grenier D. Production and properties of bacteriocin-like inhibitory substances from the swine pathogen Streptococcus suis serotype 2[J]. Appl Environ Microbiol, 2003, 69(8): 4482-4488.

Mota-Meira M, LaPointe G, Lacroix C, et al. MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens[J]. Antimicrob Agents Chemother, 2000, 44(1): 24-29.

Corrêa-Oliveira R, Fachi J L, Vieira A, et al. Regulation of immune cell function by short-chain fatty acids[J]. Clin Transl Immunol, 2016, 5(4): e73.

Alsharairi N A. The role of short-chain fatty acids in mediating very low-calorie ketogenic diet-infant gut microbiota relationships and its therapeutic potential in obesity[J]. Nutrients, 2021, 13(11): 3702.

Lai T J, Wang Y H, Chong E, et al. The impact of prenatal use of oral Clostridium butyricum on maternal group B Streptococcus colonization: A retrospective study[J]. Taiwan J Obstet Gynecol, 2021, 60(3): 442-448.

Muhammad A Y, Amonov M, Murugaiah C, et al. Intestinal colonization against Vibrio cholerae: Host and microbial resistance mechanisms[J]. AIMS Microbiol, 2023, 9(2): 346-374.

Marziali G, Foschi C, Parolin C, et al. In vitro effect of vaginal Lactobacilli against group B Streptococcus[J]. Microbial Pathogenesis, 2019, 136: 103692.

De Gregorio P R, Tomás M S J, Terraf M C L, et al. In vitro and in vivo effects of beneficial vaginal Lactobacilli on pathogens responsible for urogenital tract infections[J]. J Med Microbiol, 2014, 63(Pt 5): 685-696.

Ducarmon Q R, Zwittink R D, Hornung B V H, et al. Gut microbiota and colonization resistance against bacterial enteric infection[J]. Microbiol Mol Biol Rev, 2019, 83(3): e00007-19.

Shabayek S, Spellerberg B. Group B streptococcal colonization, molecular characteristics, and epidemiology[J]. Front Microbiol, 2018, 9: 437.

Pietrocola G, Arciola C R, Rindi S, et al. Streptococcus agalactiae non-pilus, cell wall-anchored proteins: Involvement in colonization and pathogenesis and potential as vaccine candidates[J]. Front Immunol, 2018, 9: 602.

Nobbs A H, Lamont R J, Jenkinson H F. Streptococcus adherence and colonization[J]. Microbiol Mol Biol Rev, 2009, 73(3): 407-450.

Kim S, Covington A, Pamer E G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens[J]. Immunol Rev, 2017, 279(1): 90-105.

Dudík B, Kiňová Sepová H, Bilka F, et al. Mucin pre-cultivated Lactobacillus reuteri E shows enhanced adhesion and increases mucin expression in HT-29 cells[J]. Antonie van Leeuwenhoek, 2020, 113(8): 1191-1200.

Bai Y, Lyu M, Fukunaga M, et al. Lactobacillus johnsonii enhances the gut barrier integrity via the interaction between GAPDH and the mouse tight junction protein JAM-2[J]. Food Funct, 2022, 13(21): 11021-11033.

Karczewski J, Troost F J, Konings I, et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 298(6): G851-G859.

Parada Venegas D, De la Fuente M K, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277.

Donohoe D R, Garge N, Zhang X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J]. Cell Metab, 2011, 13(5): 517-526.

Yan H, Ajuwon K M. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway[J]. PLoS One, 2017, 12(6): e0179586.

Brokaw A, Furuta A, Dacanay M, et al. Bacterial and host determinants of group B streptococcal vaginal colonization and ascending infection in pregnancy[J]. Front Cell Infect Microbiol, 2021, 11: 720789.

Cortes-Perez N G, de Moreno de LeBlanc A, Gomez-Gutierrez J G, et al. Probiotics and trained immunity[J]. Biomolecules, 2021, 11(10): 1402.

Ghanavati R, Asadollahi P, Shapourabadi M B, et al. Inhibitory effects of Lactobacilli cocktail on HT-29 colon carcinoma cells growth and modulation of the Notch and Wnt/β-catenin signaling pathways[J]. Microbial Pathogenesis, 2020, 139: 103829.

De Gregorio P R, Juárez Tomás M S, Nader-Macías M E. Immunomodulation of Lactobacillus reuteri CRL1324 on group B Streptococcus vaginal colonization in a murine experimental model[J]. Am J Reprod Immunol, 2016, 75(1): 23-35.

Jump R L, Polinkovsky A, Hurless K, et al. Metabolomics analysis identifies intestinal microbiota-derived biomarkers of colonization resistance in clindamycin-treated mice[J]. PLoS One, 2014, 9(7): e101267.

Borges S, Silva J, Teixeira P. The role of Lactobacilli and probiotics in maintaining vaginal health[J]. Arch Gynecol Obstet, 2014, 289(3): 479-489.

Martín V, Cárdenas N, Oca?a S, et al. Rectal and vaginal eradication of Streptococcus agalactiae (GBS) in pregnant women by using Lactobacillus salivarius CECT 9145, a target-specific probiotic strain[J]. Nutrients, 2019, 11(4): 810.

Ho M, Chang Y Y, Chang W C, et al. Oral Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 to reduce group B Streptococcus colonization in pregnant women: A randomized controlled trial[J]. Taiwan J Obstet Gynecol, 2016, 55(4): 515-518.

A?ikg?z Z C, Gamberzade S, G??er S, et al. Inhibitor effect of vaginal lactobacilli on group B streptococci[J]. Mikrobiyol Bul, 2005, 39(1): 17-23.

Bodaszewska M, Brzychczy-W?och M, Gosiewski T, et al. Evaluation of group B streptococcus susceptibility to lactic acid bacteria strains[J]. Med Dosw Mikrobiol, 2010, 62(2): 153-161.

Marsalková S, Cízek M, Vasil M, et al. Testing two Lactobacillus plantarum and Lactobacillus acidophilus strains for their suitability as a lipoid probiotic[J]. Berl Munch Tierarztl Wochenschr, 2004, 117(3-4): 145-147.

Patras K A, Wescombe P A, R?sler B, et al. Streptococcus salivarius K12 limits group B Streptococcus vaginal colonization[J]. Infect Immun, 2015, 83(9): 3438-3444.

De Gregorio P R, Juárez Tomás M S, Leccese Terraf M C, et al. Preventive effect of Lactobacillus reuteri CRL1324 on group B Streptococcus vaginal colonization in an experimental mouse model[J]. J Appl Microbiol, 2015, 118(4): 1034-1047.

Aloisio I, Mazzola G, Corvaglia L T, et al. Influence of intrapartum antibiotic prophylaxis against group B Streptococcus on the early newborn gut composition and evaluation of the anti-Streptococcus activity of bifidobacterium strains[J]. Appl Microbiol Biotechnol, 2014, 98(13): 6051-6060.

Tsapieva A, Duplik N, Suvorov A. Structure of plantaricin locus of Lactobacillus plantarum 8P-A3[J]. Benef Microbes, 2011, 2(4): 255-261.

Zárate G, Nader-Macias M E. Influence of probiotic vaginal Lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells[J]. Lett Appl Microbiol, 2006, 43(2): 174-180.

Cuevas-González P F, Liceaga A M, Aguilar-Toalá J E. Postbiotics and paraprobiotics: From concepts to applications[J]. Food Res Int, 2020, 136: 109502.

主站蜘蛛池模板: 欧美一区二区三区国产精品| 制服丝袜一区二区三区在线| 国产哺乳奶水91在线播放| 国产精品yjizz视频网一二区| 亚洲无码精品在线播放| 欧洲在线免费视频| 成·人免费午夜无码视频在线观看| 亚洲成a∧人片在线观看无码| 色播五月婷婷| 国产激情无码一区二区APP| 成人免费午夜视频| 老司国产精品视频91| 91精品视频在线播放| 国产00高中生在线播放| 成人精品视频一区二区在线 | 亚洲无码91视频| 日本午夜视频在线观看| 久久久受www免费人成| 色婷婷综合在线| 日本久久网站| 中文字幕波多野不卡一区| 夜夜操狠狠操| 天堂成人在线| 免费啪啪网址| 色亚洲激情综合精品无码视频 | 精品无码日韩国产不卡av | 在线a网站| 国产福利影院在线观看| 国产精品毛片一区视频播| 亚洲美女高潮久久久久久久| 曰韩免费无码AV一区二区| 亚洲综合激情另类专区| 亚洲无码日韩一区| 亚洲AV无码乱码在线观看裸奔| 99久久婷婷国产综合精| h视频在线播放| 国产一级二级三级毛片| 欧美成人二区| 亚洲成年人片| 亚洲一本大道在线| 亚洲中文字幕手机在线第一页| 欧美成a人片在线观看| 毛片手机在线看| 人妻夜夜爽天天爽| 中文字幕第1页在线播| 在线播放精品一区二区啪视频| 第一区免费在线观看| 久久夜色精品| 欧美色图第一页| 美女无遮挡被啪啪到高潮免费| 国产精品夜夜嗨视频免费视频| 色综合婷婷| 色亚洲成人| 久久这里只精品国产99热8| 无码av免费不卡在线观看| 久久综合伊人 六十路| 欧美国产在线看| 一级看片免费视频| 日韩精品一区二区三区大桥未久 | 国产主播喷水| 欧美精品成人一区二区视频一| 亚洲动漫h| 久久精品亚洲中文字幕乱码| 欧美日韩在线观看一区二区三区| 成人毛片免费在线观看| 丝袜高跟美脚国产1区| 99热这里只有精品国产99| 亚洲欧美自拍一区| 91成人在线观看| 国产在线第二页| 国产女人18水真多毛片18精品| 中文字幕久久亚洲一区| AⅤ色综合久久天堂AV色综合| 热思思久久免费视频| 国产精品部在线观看| 亚洲成人精品| 五月婷婷综合网| 国产欧美在线视频免费| 亚洲人精品亚洲人成在线| 麻豆国产在线观看一区二区| 亚洲综合第一页| 国产成人免费观看在线视频|