摘要:目的 "采用網(wǎng)絡(luò)藥理學(xué)方法研究肉蓯蓉-淫羊藿-骨碎補(bǔ)對(duì)骨質(zhì)疏松的作用機(jī)制。方法 "采用中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫(kù)與分析平臺(tái)(TCMSP)查找肉蓯蓉-淫羊藿-骨碎補(bǔ)主要成分及靶點(diǎn),采用Geen Cards數(shù)據(jù)庫(kù)查找骨質(zhì)疏松的靶基因。應(yīng)用Venny2.1.0取基因交集,采用String數(shù)據(jù)庫(kù)進(jìn)行蛋白互作網(wǎng)絡(luò)分析,Cytoscape構(gòu)建活性-成分-靶點(diǎn)網(wǎng)絡(luò)圖,David數(shù)據(jù)庫(kù)進(jìn)行GO富集分析和KEGG通路分析,并進(jìn)行分子對(duì)接。結(jié)果 "肉蓯蓉-淫羊藿-骨碎補(bǔ)有效成分46種,與骨質(zhì)疏松共同的靶點(diǎn)有225個(gè),有效成分中suchilactone、quercetin、luteolin、kaempferol、eriodictyol、eriodyctiol、naringenin為核心成分,AKT1、ERS2、MMP-9、AR、mTOR為核心靶點(diǎn);GO富集顯示得到489個(gè)生物學(xué)過(guò)程(BP)、53個(gè)細(xì)胞組成(CC)、100個(gè)分子功能(MF)。KEGG結(jié)果顯示得到癌癥通路、PI3K-Akt信號(hào)通路、雌激素信號(hào)通路等149條。分子對(duì)接結(jié)果顯示MMP-9與suchilactone、quercetin、luteolin、kaempferol能較好地結(jié)合。結(jié)論 "肉蓯蓉-淫羊藿-骨碎補(bǔ)作用于骨質(zhì)疏松是多靶點(diǎn)的,藥物有效成分能從多途徑調(diào)控骨質(zhì)疏松相關(guān)靶標(biāo),治療骨質(zhì)疏松。
關(guān)鍵詞:肉蓯蓉;淫羊藿;骨碎補(bǔ);網(wǎng)絡(luò)藥理學(xué);分子對(duì)接;作用機(jī)制
中圖分類號(hào):R683 " " " " " " " " " " " " " " " " "文獻(xiàn)標(biāo)識(shí)碼:A nbsp; " " " " " " " " " " " " " " " "DOI:10.3969/j.issn.1006-1959.2024.13.001
文章編號(hào):1006-1959(2024)13-0001-06
Mechanism of Herba Cistanches-Epimedium Herb-Fortune's Drynaria Rhizome in the Treatment of Osteoporosis Based on Network Pharmacology and Molecular Docking
WU Peng1,YANG Xi1,GAO Shang1,DAI Li-na1,WANG Xing1,MA Zhi-min2,GENG Shi-jia1
(1.School of Basic Medicine,Inner Mongolia Medical University,Hohhot 010000,Inner Mongolia,China;
2.Department of Imaging,the Second Affiliated Hospital of Inner Mongolia Medical University,Hohhot 010000,Inner Mongolia,China)
Abstract:Objective "To study the mechanism of herba cistanches-epimedium herb-fortune's drynaria rhizome on osteoporosis by network pharmacology.Methods "Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to find the main components and targets of herba cistanches-epimedium herb-fortune's drynaria rhizome, and Geen Cards database was used to find the target genes of osteoporosis. Venny2.1.0 was used to take gene intersection, String database was used for protein interaction network analysis, Cytoscape was used to construct activity-component-target network diagram, David database was used for GO enrichment analysis and KEGG pathway analysis, and molecular docking was carried out.Results "There were 46 effective components in herba cistanches-epimedium herb-fortune's drynaria rhizome, and 225 common targets with osteoporosis. suchilactone, quercetin, luteolin, kaempferol, eriodictyol, eriodyctiol and naringenin were the core components, AKT1, ERS2, MMP-9, AR and mTOR were the core targets. GO enrichment showed 489 biological processes (BP), 53 cellular components (CC) and 100 molecular functions (MF). The results of KEGG showed that 149 cancer pathways, PI3K-Akt signaling pathways, estrogen signaling pathways and so on were obtained. The results of molecular docking showed that MMP-9 could bind to suchilactone, quercetin, luteolin and kaempferol well.Conclusion "Herba cistanches-epimedium herb-fortune's drynaria rhizome has a multi-target effect on osteoporosis. The effective components of the drug can regulate osteoporosis-related targets from multiple pathways to treat osteoporosis.
Key words:Herba cistanches;Epimedium herb;Fortune's drynaria rhizome;Network pharmacology;Molecular docking;Mechanism of action
骨質(zhì)疏松(osteoporosis, OP)是一種全身的骨量減少,成骨細(xì)胞和破骨細(xì)胞失平衡的代謝性骨病。臨床表現(xiàn)為骨密度減少,骨質(zhì)脆性變大,且容易骨折。OP隨著年齡的增長(zhǎng)其發(fā)病率也顯著增加。有研究顯示,50歲以下的人群OP發(fā)病率為15%~50%,而超過(guò)60歲,發(fā)病率則增加至56%以上。OP所致的各種臨床癥狀已經(jīng)嚴(yán)重影響老年人的健康生活?,F(xiàn)代醫(yī)藥對(duì)于治療OP仍具有一定局限性,合成藥物還存在著一定腎毒性。中醫(yī)藥在治療OP等疾病中起到越來(lái)越重要的作用,包括淫羊藿、肉蓯蓉等中草藥,其中熟地黃具有特異性的大麻素2型受體(CB2R)激動(dòng)活性,并可通過(guò)CB2R調(diào)控成骨細(xì)胞和破骨細(xì)胞的功能[1]。淫羊藿、肉蓯蓉具有補(bǔ)腎填精的作用,常與其它草藥配伍使用治療OP。本研究運(yùn)用網(wǎng)絡(luò)藥理學(xué)方法,挖掘肉蓯蓉-淫羊藿-骨碎補(bǔ)對(duì)OP治療的潛在靶點(diǎn),闡明其作用于OP的途徑、通路、分子等,旨在為臨床上進(jìn)一步開(kāi)發(fā)OP的治療藥物提供新思路。
1資料與方法
1.1數(shù)據(jù)來(lái)源 "本研究涉及的網(wǎng)絡(luò)藥理學(xué)數(shù)據(jù)庫(kù)及軟件有TCMSP數(shù)據(jù)庫(kù)(https://old.tcmsp-e.com/)、Pubchem數(shù)據(jù)庫(kù)(https://pubchem.ncbi.nlm.nih.gov)、Swiss Target Prediction數(shù)據(jù)庫(kù)(http://swisstargetprediction.ch/)、Venny2(https://bioinfogp.cnb.csic.es/tools/venny/index.html)、Metascape(https://metascape.org)、Cytoscape v3.9.0 軟件(https://cytoscape.org/)。
1.2方法
1.2.1藥物有效成分及靶點(diǎn)篩選 "通過(guò)中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫(kù)與分析平臺(tái)TCMSP數(shù)據(jù)庫(kù)分別以骨碎補(bǔ)、淫羊藿、肉蓯蓉為關(guān)鍵詞搜索藥物成分,口服生物利用度(OB)≥30%且化合物類藥性(DL)值≥0.18為條件篩選藥物主要成分?;赑ubchem數(shù)據(jù)庫(kù)和Swiss Target Prediction數(shù)據(jù)庫(kù)找出各成分對(duì)應(yīng)的靶點(diǎn)。以骨質(zhì)疏松為主題詞基于Geen Cards數(shù)據(jù)庫(kù)檢索疾病靶點(diǎn)。
1.2.2 PPI網(wǎng)絡(luò)構(gòu)建及核心靶點(diǎn)篩選 "使用Venny 2.1.0取疾病靶點(diǎn)和藥物靶點(diǎn)交集基因,使用String軟件構(gòu)建PPI網(wǎng)絡(luò)圖,將PPI網(wǎng)絡(luò)圖導(dǎo)入Cytoscape v3.9.0篩選核心靶點(diǎn),構(gòu)建藥物成分-靶點(diǎn)-疾病網(wǎng)絡(luò)。
1.2.3 GO富集、KEGG通路分析 "為了探究肉蓯蓉-淫羊藿-骨碎補(bǔ)對(duì)于OP治療的作用,將核心靶點(diǎn)輸入David數(shù)據(jù)庫(kù),限定物種為“Homo sapiens”進(jìn)行基因GO富集和KEGG通路分析,篩選細(xì)胞組成(CC)、生物學(xué)過(guò)程(BP)、分子功能(MF)、KEGG等富集最顯著條目導(dǎo)入微生信進(jìn)行可視化分析。
1.2.4分子對(duì)接 "使用基于PDB數(shù)據(jù)庫(kù)下載核心靶點(diǎn)化學(xué)結(jié)構(gòu)并保存為PDB格式,使用Pubchem數(shù)據(jù)庫(kù)下載核心成分的3D結(jié)構(gòu),使用Pymol軟件去水、去小分子配體。使用Autodock軟件進(jìn)行分子對(duì)接并計(jì)算結(jié)合能。
2結(jié)果
2.1藥物有效成分-靶點(diǎn)及疾病靶點(diǎn) nbsp;通過(guò)TCMSP數(shù)據(jù)庫(kù)共得到有效成分46種,其中淫羊藿主要成分22種,骨碎補(bǔ)有效成分18種,肉蓯蓉有效成分6種,見(jiàn)表1。
2.2藥物靶點(diǎn)、疾病靶點(diǎn)交集 "使用Venny軟件獲得交集基因共有225個(gè),見(jiàn)圖1。其中藥物靶點(diǎn)有274個(gè),疾病靶點(diǎn)有3093個(gè)。
2.3 PPI網(wǎng)絡(luò)構(gòu)建及分析 "通過(guò)String數(shù)據(jù)庫(kù)建立蛋白網(wǎng)絡(luò),并進(jìn)行核心靶點(diǎn)篩選得到核心靶點(diǎn)網(wǎng)絡(luò)見(jiàn)圖2,得到節(jié)點(diǎn)51個(gè),互作關(guān)系704條,按度值排名前5位的靶點(diǎn)為MAPK3、AKT1、TNF、EGFR、SRC。
2.4藥物-成分-靶點(diǎn)-疾病網(wǎng)絡(luò)構(gòu)建 "將藥物-成分-靶點(diǎn)-疾病靶點(diǎn)導(dǎo)入Cytoscape軟件,分析數(shù)據(jù)構(gòu)建網(wǎng)絡(luò)圖見(jiàn)圖3,其中MOL005384(suchilactone)、MOL000098(quercetin)、MOL000006(luteolin)、MOL000422(kaempferol)、MOL005190(eriodictyol)、MOL002914(Eriodyctiol)、MOL004328(naringenin)等主要成分節(jié)點(diǎn)數(shù)顯著高于其他成分。其中的主要的靶點(diǎn)為AKT1、ERS2、MMP-9、AR、mTOR等。
2.5 GO富集分析、KEGG通路分析 "將51個(gè)核心靶點(diǎn)進(jìn)行GO富集分析,分析結(jié)果得到489個(gè)BP、53個(gè)CC、100個(gè)MF。各類比條目取前15個(gè)制作GO富集圖,共涉及RNA聚合酶Ⅱ啟動(dòng)子轉(zhuǎn)錄的正向調(diào)控生物學(xué)過(guò)程、凋亡過(guò)程的負(fù)調(diào)控、大分子復(fù)合物細(xì)胞成分、線粒體細(xì)胞成分、蛋白激酶結(jié)合分子功能、RNA聚合酶Ⅱ核心啟動(dòng)子近端區(qū)序列特異性DNA結(jié)合分子功能等見(jiàn)圖4。
KEGG結(jié)果顯示得到癌癥通路、PI3K-Akt信號(hào)通路、雌激素信號(hào)通路、HIF-1信號(hào)通路等149條信號(hào)通路,取前20個(gè)通路制作KEGG分析見(jiàn)圖5。
2.6分子對(duì)接 "基于PDB數(shù)據(jù)庫(kù)查找大分子受體AKT、ERS、MMP-9,并去水加氫。使用Pubchem數(shù)據(jù)庫(kù)得到suchilactone、quercetin、luteolin、kaempferol小分子結(jié)構(gòu)處理后作為配體。使用pymol、openbabel、Autodock軟件進(jìn)行對(duì)接前處理及對(duì)接并將結(jié)果可視化。結(jié)果顯示MMP-9與Suchilactone、quercetin、luteolin、kaempferol等小分子容易結(jié)合,見(jiàn)圖6、表2。
3討論
OP是一嚴(yán)重的骨代謝紊亂疾病,特別是年齡在60歲以上的女性,由于激素水平的影響,OP發(fā)病率顯著提高。OP的特征性變化為成骨細(xì)胞合成骨質(zhì)的速度小于破骨細(xì)胞的作用。此外,鈣吸收減少、維生素D代謝障礙、腎功能下降等因素亦可導(dǎo)致OP[2]。同時(shí),OP可以導(dǎo)致骨的脆性增加,容易骨折。
治療OP首要目的是預(yù)防骨折,臨床上常常采用雙膦酸鹽、Denosumab、特立帕肽和阿鮑帕拉肽等幾種藥物。通過(guò)刺激成骨細(xì)胞的合成,或是抑制破骨細(xì)胞的作用來(lái)治療OP,其治療效果不是非常明顯,并且還具有一定的副作用。傳統(tǒng)中藥治療OP尤為重要。骨碎補(bǔ)、淫羊藿、肉蓯蓉等中草藥在治療OP上被很多中醫(yī)視為優(yōu)質(zhì)藥材。骨碎補(bǔ)主要成分有黃酮類、萜類、酚酸類等,其對(duì)OP有很好的治療作用[3,4]。淫羊藿作為一種小檗科草本植物,中醫(yī)常常用于補(bǔ)腎、壯陽(yáng)、強(qiáng)筋骨、祛風(fēng)濕與其他藥物進(jìn)行配比。近年來(lái),越來(lái)越多的研究發(fā)現(xiàn)淫羊藿乙醇苷還具有調(diào)節(jié)免疫力,抗炎作用[5,6]。同時(shí)基于代謝組學(xué)研究表明淫羊藿對(duì)于OP具有治療作用[7],中藥復(fù)方淫羊藿苷、知母皂苷和阿魏酸能通過(guò)BMP和Wnt/β-catenin信號(hào)通路來(lái)促進(jìn)骨基質(zhì)的表達(dá)進(jìn)而調(diào)節(jié)UMR-106成骨細(xì)胞成骨作用[8]。肉蓯蓉作為我國(guó)北方地區(qū)生長(zhǎng)的肉質(zhì)植物,生長(zhǎng)習(xí)性為沙漠、干旱地區(qū),本草綱目最早記載為治療腎陽(yáng)虛、腰膝酸軟等,并且被譽(yù)為“沙漠人參”。肉蓯蓉主要成分有肉蓯蓉甙、洋丁香酚甙、β-谷甾醇、胡蘿卜甙及氨基酸和多糖等。研究顯示[9],肉蓯蓉總苷能通過(guò)Wnt/β-catenin信號(hào)通路,激活GSK-3β降解β-catenin因子進(jìn)而影響細(xì)胞周期,促進(jìn)細(xì)胞凋亡的發(fā)生,限制細(xì)胞遷移產(chǎn)生抑制肝癌的作用。Wang F等[10]研究顯示,肉蓯蓉總苷和多糖可通過(guò)激活Wnt/β-catenin信號(hào)通路促進(jìn)SAMP6小鼠成骨性骨形成,改善骨微結(jié)構(gòu)損傷,治療OP。在本研究中找到了stigmasterol、beta-sitosterol、kaempferol、luteolin、Icariin、quercetin、chryseriol等共46種主要成分。主要涉及的靶點(diǎn)有AKT1、ERS2、MMP-9、AR、mTOR等,研究顯示骨碎補(bǔ)、淫羊藿、肉蓯蓉復(fù)方能通過(guò)AKT、mTOR等因子來(lái)治療OP。
為了更深一步確定骨碎補(bǔ)、肉蓯蓉、淫羊藿對(duì)于OP代謝機(jī)制。本研究采用GO富集、KEGG分析,結(jié)果表明了3種藥物所涉及的分子是多靶點(diǎn)的。GO條目中有典型的炎性因子IL-2、絲裂原活化蛋白激酶MAPK、細(xì)胞凋亡因子CASPASE等,在代謝性骨病Wnt/β通路中,IL-2的表達(dá)具有重要的作用[11]。同時(shí),有研究表明葛根素通過(guò)抑制TRAF6/ROS依賴的MAPK/NF-κB信號(hào)通路抑制破骨細(xì)胞生成,從而減輕卵巢切除小鼠的骨質(zhì)疏松癥[12]。以上結(jié)果都顯示中藥骨碎補(bǔ)、淫羊藿、肉蓯蓉可以從調(diào)控炎癥、抑制骨細(xì)胞凋亡及調(diào)控代謝等方式治療OP。KEGG結(jié)果顯示骨碎補(bǔ)、淫羊藿、肉蓯蓉涉及的通路主要有癌癥通路、雌激素信號(hào)通路、PI3K-Akt信號(hào)通路等多條通路。在骨代謝相關(guān)疾病中,PI3K-Akt通路作為代謝樞紐,具有重要的作用。研究顯示[13],增加機(jī)械負(fù)荷和紅細(xì)胞的生成能通過(guò)調(diào)節(jié)PI3K-Akt信號(hào)通路進(jìn)而增加絕經(jīng)后導(dǎo)致OP的骨生成和血管生成。中藥復(fù)方杜仲、菟絲子和骨碎補(bǔ)提取物通過(guò)PI3K/Akt途徑抑制破骨細(xì)胞生成來(lái)改善糖皮質(zhì)激素誘導(dǎo)的骨質(zhì)疏松癥[14]。淫羊藿也能通過(guò)PI3K/Akt調(diào)節(jié)多種疾病[15]。分子對(duì)接結(jié)果顯示,MMP-9與suchilactone、quercetin、luteolin、kaempferol等小分子具有較好的結(jié)合能。最新的研究顯示MMP-9作為一種重要的蛋白參與OP等骨代謝性疾病[16],探究表明鹿茸多糖和多肽提取物通過(guò)刺激MAKP和MMP-9信號(hào)通路抑制高轉(zhuǎn)換型骨質(zhì)疏松癥中的骨吸收[17]。配體用quercetin和VitE能在較小程度上調(diào)節(jié)骨細(xì)胞的總數(shù),通過(guò)調(diào)節(jié)LC3,beclin1和caspase 3等自噬和凋亡蛋白的表達(dá)來(lái)預(yù)防骨質(zhì)疏松癥[18]。luteolin在治療骨質(zhì)疏松癥中具有多靶點(diǎn)和多通道的作用,可以減少OVX大鼠的骨丟失,并能夠通過(guò)調(diào)節(jié)PI3K-Akt信號(hào)通路的活性來(lái)促進(jìn)BMSCs的成骨分化[19]。基于分子對(duì)接初步顯示中藥復(fù)方成分含有的小分子化合物能夠通過(guò)多靶點(diǎn)、多通路治療和預(yù)防OP。
綜上所述,suchilactone、quercetin、luteolin、kaempferol等成分為骨碎補(bǔ)、淫羊藿、肉蓯蓉的關(guān)鍵成分,AKT1、ERS2、MMP-9、AR、mTOR等因子為為重要小分子作用的關(guān)鍵靶點(diǎn),可能通過(guò)其通路治療和預(yù)防OP。通過(guò)網(wǎng)絡(luò)藥理學(xué)實(shí)驗(yàn)的分析為進(jìn)一步挖掘中藥復(fù)方骨碎補(bǔ)、淫羊藿、肉蓯蓉治療OP提供了理論基礎(chǔ),但要進(jìn)一步闡明具體的代謝機(jī)制仍有待實(shí)驗(yàn)驗(yàn)證。
參考文獻(xiàn):
[1]胡思婧,練晨霞,張奇,等.熟地黃的大麻素2型受體激動(dòng)劑活性及對(duì)骨代謝的調(diào)控作用研究[J].中草藥,2022,53(20):6481-6491.
[2]Wu D,Cline-Smith A,Shashkova E,et al.T-Cell Mediated Inflammation in Postmenopausal Osteoporosis[J].Front Immunol,2021,12:687551.
[3]馬江濤,萬(wàn)雷,黃宏興.基于網(wǎng)絡(luò)藥理學(xué)探討骨碎補(bǔ)治療骨質(zhì)疏松癥的作用機(jī)制[J].中國(guó)骨質(zhì)疏松雜志,2020,26(4):490-496.
[4]楊雯靜,黃健,王維,等.基于網(wǎng)絡(luò)藥理學(xué)和體外細(xì)胞實(shí)驗(yàn)探究“三七-骨碎補(bǔ)”藥對(duì)活性成分治療骨質(zhì)疏松癥的作用機(jī)制[J].中國(guó)中藥雜志,2023,48(4):1087-1097.
[5]Bi Z,Zhang W,Yan X.Anti-inflammatory and immunoregulatory effects of icariin and icaritin[J].Biomed Pharmacother,2022,151:113180.
[6]Dai Z.Study on the Protective Effect and Mechanism of the Rhizoma Drynariae-Epimedium Formula on Osteoarthritis in Rats[J].Contrast Media Mol Imaging,2022,2022:2869707.
[7]Zhao JF,Xu JY,Xu YE,et al.High-Throughput Metabolomics Method for Discovering Metabolic Biomarkers and Pathways to Reveal Effects and Molecular Mechanism of Ethanol Extract From Epimedium Against Osteoporosis[J].Front Pharmacol,2020,11:1318.
[8]Li M,Zhang ND,Wang Y,et al.Coordinate regulatory osteogenesis effects of icariin, timosaponin B II and ferulic acid from traditional Chinese medicine formulas on UMR-106 osteoblastic cells and osteoblasts in neonatal rat calvaria cultures[J].J Ethnopharmacol,2016,185:120-131.
[9]馮朵,王靖,蔣勇軍,等.肉蓯蓉總苷對(duì)HepG2細(xì)胞增殖、凋亡及Wnt/β-Catenin通路相關(guān)蛋白表達(dá)的影響[J].食品工業(yè)科技,2023,44(20):389-397.
[10]Wang F,Tu P,Zeng K,et al.Total glycosides and polysaccharides of Cistanche deserticola prevent osteoporosis by activating Wnt/β-catenin signaling pathway in SAMP6 mice[J].J Ethnopharmacol,2021,271:113899.
[11]Ma X,Zhu X,He X,et al.The Wnt pathway regulator expression levels and their relationship to bone metabolism in thoracolumbar osteoporotic vertebral compression fracture patients[J].Am J Transl Res,2021,13(5):4812-4818.
[12]Xiao L,Zhong M,Huang Y,et al.Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB signaling pathways[J].Aging (Albany NY),2020,12(21):21706-21729.
[13]Abdurahman A,Li X,Li J,et al.Loading-driven PI3K/Akt signaling and erythropoiesis enhanced angiogenesis and osteogenesis in a postmenopausal osteoporosis mouse model[J].Bone,2022,157:116346.
[14]Han J,Li L,Zhang C,et al.Eucommia, Cuscuta, and Drynaria Extracts Ameliorate Glucocorticoid-Induced Osteoporosis by Inhibiting Osteoclastogenesis Through PI3K/Akt Pathway[J].Front Pharmacol,2022,12:772944.
[15]Verma A,Aggarwal K,Agrawal R,et al.Molecular mechanisms regulating the pharmacological actions of icariin with special focus on PI3K-AKT and Nrf-2 signaling pathways[J].Mol Biol Rep,2022,49(9):9023-9032.
[16]Sabry M,Mostafa S,Rashed L,et al.Matrix metalloproteinase 9 a potential major player connecting atherosclerosis and osteoporosis in high fat diet fed rats[J].PLoS One,2021,16(2):e0244650.
[17]Liu YY,Ding YF,Sui HJ,et al.Pilose antler (Cervus elaphus Linnaeus) polysaccharide and polypeptide extract inhibits bone resorption in high turnover type osteoporosis by stimulating the MAKP and MMP-9 signaling pathways[J].J Ethnopharmacol,2023,304:116052.
[18]Vakili S,Zal F,Mostafavi-Pour Z,et al.Quercetin and vitamin E alleviate ovariectomy-induced osteoporosis by modulating autophagy and apoptosis in rat bone cells[J].J Cell Physiol,2021,236(5):3495-3509.
[19]Liang G,Zhao J,Dou Y,et al.Mechanism and Experimental Verification of Luteolin for the Treatment of Osteoporosis Based on Network Pharmacology[J].Front Endocrinol (Lausanne),2022,13:866641.
收稿日期:2023-07-24;修回日期:2023-08-29
編輯/肖婷婷