[摘要] 目的:探究基于藥代動(dòng)力學(xué)對(duì)比增強(qiáng)(Pk-DCE)MRI影像組學(xué)模型列線(xiàn)圖在乳腺癌腋窩淋巴結(jié)(ALN)轉(zhuǎn)移預(yù)測(cè)中的價(jià)值。方法:回顧性收集術(shù)前行動(dòng)態(tài)對(duì)比增強(qiáng)MRI(DCE-MRI)的乳腺癌患者591例,按照9∶1的比例隨機(jī)分為訓(xùn)練集531例和測(cè)試集60例。將DCE-MRI圖像導(dǎo)入定量分析軟件獲取容量轉(zhuǎn)移常數(shù)(Ktrans)、流出速率常數(shù)(Kep)、血管外細(xì)胞間隙體積分?jǐn)?shù)(Ve)、血漿容積分?jǐn)?shù)(Vp)參數(shù)圖。用ITK-SNAP軟件分別在DCE-MRI原始圖和參數(shù)圖上勾畫(huà)ROI,并用Pyradiomics提取特征。通過(guò)方差閾值、Select-K Best、最小絕對(duì)收縮和選擇算子(LASSO)算法篩選特征并降維,通過(guò)logistic回歸分析建立影像組學(xué)模型并計(jì)算模型的影像組學(xué)評(píng)分(Radsocre)。利用單因素和多因素logistic回歸分析篩選差異有統(tǒng)計(jì)學(xué)意義的臨床特征和Radsocre建立聯(lián)合模型,并繪制列線(xiàn)圖。應(yīng)用ROC曲線(xiàn)評(píng)估模型的預(yù)測(cè)效能,用決策曲線(xiàn)分析(DCA)和校準(zhǔn)曲線(xiàn)評(píng)估模型的一致性。通過(guò)DeLong檢驗(yàn)比較臨床特征模型、影像組學(xué)模型及聯(lián)合模型診斷效能的差異。結(jié)果:利用腫瘤直徑、Radscore DCE、Radscore Ve、Radscore Vp建立聯(lián)合模型,其在ALN轉(zhuǎn)移預(yù)測(cè)中表現(xiàn)較好。聯(lián)合模型在訓(xùn)練集中AUC為0.877(95%CI 0.848~0.906),敏感度為0.826(95%CI 0.779~0.866),特異度為0.723(95%CI 0.656~0.782);在測(cè)試集中AUC為0.889(95%CI 0.800~0.978),敏感度為0.850(95%CI 0.695~0.938),特異度為0.889(95%CI 0.639~0.981)。聯(lián)合模型預(yù)測(cè)效能優(yōu)于臨床特征模型和影像組學(xué)模型。DCA顯示,聯(lián)合模型有顯著凈效益,具有較高的應(yīng)用價(jià)值。聯(lián)合模型的校準(zhǔn)曲線(xiàn)一致性較好。結(jié)論:基于Pk-DCE-MRI影像組學(xué)模型列線(xiàn)圖可用于術(shù)前預(yù)測(cè)乳腺癌ALN轉(zhuǎn)移,為乳腺癌的診療提供新的有效工具。
[關(guān)鍵詞] 影像組學(xué);列線(xiàn)圖;乳腺腫瘤;腋窩淋巴結(jié)轉(zhuǎn)移;磁共振成像
Predicting axillary lymph node metastasis in breast cancer using pharmacokinetic dynamic contrast-enhanced MRI radiomics nomogram
SU Di WANG Qi GAO Jing ZHANG Zhongsheng ZHANG Haicheng CHU Tongpeng MAO Ning XIE Haizhu
1School of Medical Imaging,Binzhou Medical University,Yantai 264003,China;2Department of Imaging,Yantai Yuhuangding Hospital,Yantai 264000,China.
[Abstract] Objective:To develop a pharmacokinetic dynamic contrast-enhanced MRI (Pk-DCE-MRI) radiomics model nomogram for preoperative prediction of axillary lymph node (ALN) metastasis in breast cancer. Methods:This retrospective study analyzed 591 breast cancer patients who underwent preoperative DCE-MRI. Patients were randomly divided into training (531 cases) and validation (60 cases) cohorts at a 9∶1 ratio. Ktrans,Kep,Ve,Vp parametric maps were generated using quantitative analysis software. ROIs were delineated on DCE-MRI images and parametric maps using ITK-SNAP,with radiomics features extracted via Pyradiomics. Features were selected and dimensionality reduced through variance,Select-K Best,and LASSO algorithm. A radiomics model was constructed using logistic regression to calculate radiomics score (Radscore). Clinical predictors were integrated through univariate and multivariate logistic regression to establish a combined model. Model performance was evaluated using ROC curve analysis,decision curve analysis (DCA),and calibration curves. The DeLong test was used to compare the differences between the clinical features model,the radiomics model and the combined model. Results:The combined model incorporated tumor diameter,Radscore DCE,Radscore Ve,and Radscore Vp had a good performance for ALN metastasis. In the training cohort,it achieved an AUC of 0.877(95%CI 0.848—0.906),with a sensitivity of 0.826(95%CI 0.779—0.866) and a specificity of 0.723(95%CI 0.656—0.782);while in the validation cohort,it achieved an AUC of 0.889(95%CI 0.800—0.978),with a sensitivity of 0.850(95%CI 0.695—0.938) and a specificity of 0.889(95%CI 0.639—0.981). The diagnostic efficiency of the combined model was better than both the clinical feature model and the radiomics model. DCA revealed that the combined model had a high net benefit and significant clinical application value. The calibration curve showed the combined model had a good consistency. Conclusions:The nomogram based on Pk-DCE-MRI radiomics can be used for preoperative prediction of ALN metastasis and provide a new effective tool for diagnosis and treatment in breast cancer.
[Key words] Radiomics;Nomogram;Breast neoplasms;Axillary lymph node metastasis;Magnetic resonance imaging
乳腺癌是常見(jiàn)的女性惡性腫瘤,發(fā)病率逐年上升且趨向年輕化,嚴(yán)重威脅女性的身心健康[1-2]。腋窩淋巴結(jié)(axillary lymph node,ALN)是乳腺癌最常見(jiàn)的轉(zhuǎn)移部位,其狀態(tài)直接關(guān)系到治療方案的選擇[3-4]。前哨淋巴結(jié)活檢是評(píng)估ALN狀態(tài)的主要手段,但其為有創(chuàng)檢查,且并發(fā)癥較多,易增加患者感染風(fēng)險(xiǎn)[5-6]。
目前,超聲、乳腺X線(xiàn)攝影、MRI被認(rèn)為是評(píng)估乳腺癌ALN轉(zhuǎn)移的主要方法[7],但超聲診斷易受醫(yī)師主觀因素影響[8];乳腺X線(xiàn)攝影有輻射且易受體位影響,難以觀察到完整的腋窩區(qū)域[9];MRI因無(wú)輻射、軟組織分辨力高、可多參數(shù)、多方位成像等優(yōu)勢(shì)成為評(píng)估乳腺癌ALN轉(zhuǎn)移的主要手段[10]。藥代動(dòng)力學(xué)對(duì)比增強(qiáng)(pharmacokinetic dynamic contrast-enhanced,Pk-DCE)可反映對(duì)比劑在血管和組織之間的轉(zhuǎn)運(yùn)情況,提供定量參數(shù),監(jiān)測(cè)腫瘤組織的微循環(huán)狀態(tài),對(duì)腫瘤轉(zhuǎn)移的評(píng)估預(yù)測(cè)更具優(yōu)勢(shì)[11]。
影像組學(xué)是醫(yī)學(xué)影像與計(jì)算機(jī)科學(xué)、數(shù)據(jù)挖掘技術(shù)深度融合的產(chǎn)物,其利用先進(jìn)的算法,通過(guò)ROI勾畫(huà)、特征提取及篩選,從醫(yī)學(xué)影像圖像中獲取深層次的信息,結(jié)合統(tǒng)計(jì)學(xué)和機(jī)器學(xué)習(xí)工具最終建立模型。影像組學(xué)可量化有關(guān)腫瘤異質(zhì)性或其他有價(jià)值的特征,為疾病的診斷、預(yù)測(cè)和治療評(píng)估提供更多可能,從而輔助醫(yī)師進(jìn)行更精準(zhǔn)、更全面的診斷[12-14]。目前,基于動(dòng)態(tài)對(duì)比增強(qiáng)(dynamic contrast-enhanced,DCE)MRI術(shù)前預(yù)測(cè)乳腺癌ALN轉(zhuǎn)移的國(guó)內(nèi)外研究較多見(jiàn)[15-17],鮮有基于Pk-DCE-MRI預(yù)測(cè)乳腺癌ALN轉(zhuǎn)移的研究。本研究基于Pk-DCE-MRI圖像,運(yùn)用影像組學(xué)方法從影像中提取定量特征,構(gòu)建一種無(wú)創(chuàng)的乳腺癌術(shù)前ALN轉(zhuǎn)移預(yù)測(cè)模型,以輔助臨床制訂個(gè)性化治療方案。
1" 資料與方法
1.1" 一般資料
回顧性收集煙臺(tái)毓璜頂醫(yī)院2019年11月至2022年11月術(shù)前行乳腺DCE-MRI且經(jīng)病理證實(shí)的乳腺癌患者。納入標(biāo)準(zhǔn):①直徑>5 mm的腫塊性病變;②病理結(jié)果及臨床資料齊全,臨床資料包括年齡、腫瘤直徑、雌激素受體、孕激素受體、人類(lèi)表皮生長(zhǎng)因子受體2(human epidermal growth factor receptor 2,Her-2)和Ki67等。排除標(biāo)準(zhǔn):①既往行乳腺手術(shù)、化療、放療、激素治療的患者;②圖像質(zhì)量不佳。共納入591例,其中ALN轉(zhuǎn)移243例,無(wú)ALN轉(zhuǎn)移348例;按照9∶1的比例隨機(jī)分為訓(xùn)練集531例和測(cè)試集60例。本研究經(jīng)醫(yī)院倫理委員會(huì)審批(批號(hào):2022-248),免除患者知情同意。
1.2" 儀器與方法
采用GE Discovery 750W 3.0 T MRI掃描儀,8通道乳腺專(zhuān)用線(xiàn)圈?;颊呷「┡P位,DCE-MRI在軸向平面上行快速序列掃描,掃描參數(shù):TR 6.2 ms,TE 2.3 ms,翻轉(zhuǎn)角15°,矩陣288×320,視野36 cm×36 cm,層厚2 mm,無(wú)間隔。掃描30期,第1期為蒙片,采用高壓注射器以團(tuán)注方式注入對(duì)比劑Gd-DTPA(碘濃度470 mg/mL),劑量0.2 mmol/kg體質(zhì)量,流率2.5 mL/s,后注射生理鹽水30 mL,單期掃描時(shí)間16 s,共掃描8 min。
1.3" 藥代動(dòng)力學(xué)參數(shù)提取
將DCE-MRI數(shù)據(jù)傳輸至離線(xiàn)工作站,由2位分別有10、15年乳腺影像診斷經(jīng)驗(yàn)的放射科醫(yī)師(醫(yī)師1、醫(yī)師2),采用雙盲法進(jìn)行分析:①使用定量分析軟件OmniKinetics(GE Healthcare),利用非線(xiàn)性配準(zhǔn)框架算法糾正因呼吸或不自主運(yùn)動(dòng)引起的相位錯(cuò)位,以消除潛在的圖像失真和偽影,確保數(shù)據(jù)的準(zhǔn)確性。②手動(dòng)繪制胸主動(dòng)脈,提取動(dòng)脈輸入函數(shù),描述對(duì)比劑在血液中的濃度變化,以準(zhǔn)確計(jì)算藥代動(dòng)力學(xué)參數(shù)。③選用二室擴(kuò)展Tofts模型計(jì)算藥代動(dòng)力學(xué)參數(shù),包括容量轉(zhuǎn)移常數(shù)(Ktrans)、流出速率常數(shù)(Kep)、血管外細(xì)胞間隙體積分?jǐn)?shù)(Ve)和血漿容積分?jǐn)?shù)(Vp)。
1.4" 圖像分割
將DCE-MRI原始圖及參數(shù)圖導(dǎo)入ITK-SNAP軟件進(jìn)行圖像分割。醫(yī)師1在DCE-MRI強(qiáng)化最明顯一期的原始圖及參數(shù)圖上沿腫瘤邊緣逐層勾畫(huà)ROI,保存為VOI,由醫(yī)師2審查。為評(píng)估觀察者間分割的一致性,在訓(xùn)練集中隨機(jī)選擇60例患者,由醫(yī)師2和1位具有12年乳腺影像診斷經(jīng)驗(yàn)的醫(yī)師3勾畫(huà)ROI,醫(yī)師1在30 d后重新勾畫(huà)。ROI包括整個(gè)腫瘤區(qū)域,并盡量避開(kāi)壞死和囊腔。用Dice系數(shù)評(píng)價(jià)觀察者間圖像分割的一致性。
1.5" 影像組學(xué)特征提取及篩選
為確保提取的特征具有較高一致性,在圖像特征提取之前,通過(guò)Z-score對(duì)DCE-MRI圖像進(jìn)行標(biāo)準(zhǔn)化處理,用Pyradiomics3.0.1進(jìn)行特征提取,提取的特征包括一階特征、形狀特征、紋理特征和濾波特征。通過(guò)ICC評(píng)估影像組學(xué)特征提取的一致性。影像組學(xué)特征篩選:①用方差閾值法進(jìn)行篩選,去除方差<0.8的特征值;②用Select-K Best篩選P<0.05的特征;③用最小絕對(duì)收縮和選擇算子(least absolute shrinkage and selection operator regression,LASSO)算法和5折交叉驗(yàn)證選擇最佳特征。將篩選出的特征行l(wèi)ogistic回歸分析,獲得各特征對(duì)應(yīng)的回歸系數(shù),通過(guò)特征值和回歸系數(shù)線(xiàn)性組合得到影像組學(xué)評(píng)分(Radscore)。
1.6" 模型構(gòu)建
基于DCE原始圖、Ktrans、Kep、Ve、Vp參數(shù)圖建立影像組學(xué)模型,即DCE模型、Ktrans模型、Kep模型、Ve模型、Vp模型,并計(jì)算各模型的Radscore。篩選有無(wú)ALN轉(zhuǎn)移患者差異有統(tǒng)計(jì)學(xué)意義的臨床指標(biāo)建立臨床模型。將差異有統(tǒng)計(jì)學(xué)意義的臨床特征和Radscore行單因素logistic回歸分析,將P<0.05的特征再行多因素logistic回歸分析,篩選出最有價(jià)值的特征構(gòu)建聯(lián)合模型,并繪制列線(xiàn)圖。
1.7" 統(tǒng)計(jì)學(xué)分析
采用Python(3.6.0)和R語(yǔ)言(4.0.3)軟件進(jìn)行數(shù)據(jù)分析。采用Kolmogorov-Smirnov法行正態(tài)分布檢驗(yàn),符合正態(tài)分布的數(shù)據(jù)以x±s表示,組間比較行t檢驗(yàn);非正態(tài)分布的數(shù)據(jù)以M(QL,QU)表示,組間比較采用秩和檢驗(yàn)。分類(lèi)變量間比較采用χ2檢驗(yàn)。繪制ROC曲線(xiàn)評(píng)估模型的預(yù)測(cè)效能。通過(guò)DeLong檢驗(yàn)評(píng)估不同模型之間的預(yù)測(cè)效能。繪制校準(zhǔn)曲線(xiàn)和決策曲線(xiàn)分析(decision curve analysis,DCA)評(píng)估模型的臨床凈收益。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2" 結(jié)果
2.1" 有無(wú)ALN轉(zhuǎn)移乳腺癌患者臨床資料比較
有無(wú)ALN轉(zhuǎn)移乳腺癌患者之間,年齡、腫瘤直徑差異均有統(tǒng)計(jì)學(xué)意義(均P<0.05),其他指標(biāo)差異均無(wú)統(tǒng)計(jì)學(xué)意義(均P>0.05)(表1)。
2.2" 特征篩選與影像組學(xué)模型構(gòu)建
每組圖像提取1 409個(gè)影像組學(xué)特征,最終從DCE圖像中篩選出26個(gè);從Ktrans圖像中篩選出18個(gè);從Kep圖像中篩選出22個(gè);從Ve圖像中篩選出30個(gè);從Vp圖像中篩選出18個(gè)。通過(guò)logistic回歸分析建立DCE模型、Ktrans模型、Kep模型、Ve模型、Vp模型,計(jì)算出各模型的Radscore。通過(guò)ROC曲線(xiàn)評(píng)估模型的預(yù)測(cè)能力(表2)。在測(cè)試集中,Ve模型效能最佳,AUC為0.879(95%CI 0.785~0.973),敏感度為0.867(95%CI 0.684~0.956),特異度為0.700(95%CI 0.504~0.846)。
2.3" 變量篩選與臨床特征模型、聯(lián)合模型構(gòu)建
將年齡、腫瘤直徑、Radscore DCE、Radscore Ktrans、Radscore Kep、Radscore Ve、Radscore Vp行單因素和多因素logistic回歸分析。多因素分析顯示,年齡、Radscore Ktrans、Radscore Kep差異均無(wú)統(tǒng)計(jì)學(xué)意義(均P>0.05)(表3)。最終選擇腫瘤直徑構(gòu)建臨床特征模型,選擇Radscore DCE、Radscore Ve、Radscore Vp構(gòu)建影像組學(xué)模型,選擇腫瘤直徑、Radscore DCE、Radscore Ve、Radscore Vp構(gòu)建聯(lián)合模型,并繪制列線(xiàn)圖(圖1)。
2.4" 模型效能與評(píng)估驗(yàn)證
聯(lián)合模型的預(yù)測(cè)效能優(yōu)于臨床特征模型、影像組學(xué)模型(表4)。在訓(xùn)練集中,聯(lián)合模型的AUC為0.877(95%CI 0.848~0.906)(圖2a),比臨床特征模型和影像組學(xué)模型的AUC分別提高14.5%和0.45%;與臨床特征模型相比,兩者的敏感度水平相當(dāng),聯(lián)合模型的準(zhǔn)確率、特異度明顯高于臨床特征模型;與影像組學(xué)模型相比,聯(lián)合模型的敏感度高出約2.0%,特異度、準(zhǔn)確率略低。在測(cè)試集中,聯(lián)合模型的AUC為0.889(95%CI 0.800~0.978)(圖2b),比臨床特征模型和影像組學(xué)模型的AUC分別提高約18.7%和0.45%,且聯(lián)合模型的敏感度、準(zhǔn)確率均明顯高于臨床特征模型和影像組學(xué)模型。DeLong檢驗(yàn)表明,訓(xùn)練集和測(cè)試集中影像組學(xué)模型及聯(lián)合模型的AUC均優(yōu)于臨床特征模型(均P<0.05),影像組學(xué)模型與聯(lián)合模型之間差異無(wú)統(tǒng)計(jì)學(xué)意義(均P>0.05)。DCA顯示,聯(lián)合模型預(yù)測(cè)乳腺癌ALN轉(zhuǎn)移有顯著的臨床凈收益(圖3a,3b)。校準(zhǔn)曲線(xiàn)顯示訓(xùn)練集和測(cè)試集預(yù)測(cè)的一致性良好(圖3c)。
3" 討論
乳腺癌患者術(shù)前ALN的評(píng)估對(duì)制訂治療方案和預(yù)后有重要意義[18],因此,尋求一種無(wú)創(chuàng)的術(shù)前預(yù)測(cè)乳腺癌淋巴結(jié)轉(zhuǎn)移的方法對(duì)患者和臨床醫(yī)師均有較大幫助[19]。Liu等[20]基于DCE-MRI圖像進(jìn)行特征提取,建立聯(lián)合模型預(yù)測(cè)ALN轉(zhuǎn)移的AUC為0.763,但其納入的樣本量較小,模型預(yù)測(cè)效能有待提高。Dong等[21]基于脂肪抑制T2WI圖像和DWI圖像建立預(yù)測(cè)乳腺癌ALN轉(zhuǎn)移的聯(lián)合模型,驗(yàn)證集和訓(xùn)練集的AUC分別為0.863和0.805,低于本研究結(jié)果,表明常規(guī)MRI序列預(yù)測(cè)效能不夠理想。本研究采用DCE-MRI圖像和藥代動(dòng)力學(xué)參數(shù)圖像建立預(yù)測(cè)模型,可獲取更豐富的信息,提高預(yù)測(cè)效能。
Pk-DCE-MRI可通過(guò)提供定量參數(shù)反映對(duì)比劑在血管和組織之間的轉(zhuǎn)運(yùn)情況,在顯示腫瘤內(nèi)部異質(zhì)性和提供腫瘤微觀信息方面更有優(yōu)勢(shì)[22]。目前,在影像組學(xué)領(lǐng)域,基于Pk-DCE-MRI影像組學(xué)預(yù)測(cè)術(shù)前乳腺癌ALN轉(zhuǎn)移主要通過(guò)Ktrans、Kep、Ve、Vp參數(shù),而本研究基于Ktrans、Kep、Ve、Vp參數(shù)圖像,勾畫(huà)ROI,提取影像組學(xué)特征并建立Ktrans模型、Kep模型、Ve模型、Vp模型預(yù)測(cè)乳腺癌ALN轉(zhuǎn)移。Liu等[23]基于Pk-DCE-MRI影像組學(xué)建立預(yù)測(cè)術(shù)前乳腺癌ALN轉(zhuǎn)移的聯(lián)合模型,其訓(xùn)練集和驗(yàn)證集的AUC分別為0.80和0.76,此模型在腫瘤的最大層面提取影像組學(xué)特征,預(yù)測(cè)結(jié)果略低于本研究。本研究基于整個(gè)腫瘤的VOI,可獲取更多的特征,預(yù)測(cè)效能更高。Zhou等[24]用Pk-DCE-MRI影像組學(xué)建立模型,預(yù)測(cè)乳腺癌良惡性的Ktrans、Kep、Ve、Vp模型的AUC分別為0.95、0.93、0.89和0.96,臨床意義較高;但在預(yù)測(cè)分子分型雌激素受體/孕激素受體、Her-2、Ki-67的AUC為0.71~0.77、0.61~0.68、0.67~0.74。該研究?jī)H用影像組學(xué)特征建立模型,靠單一指標(biāo)很難準(zhǔn)確預(yù)測(cè)乳腺癌的分子分型。
列線(xiàn)圖作為一種可視化預(yù)測(cè)工具,可結(jié)合影像組學(xué)特征和臨床特征,將復(fù)雜的統(tǒng)計(jì)學(xué)模型轉(zhuǎn)化為直觀的圖形界面,僅找到相應(yīng)的特征值,將預(yù)測(cè)值相加,即可得到最終的預(yù)測(cè)結(jié)果[25]。本研究納入臨床特征腫瘤直徑和Radscore DCE、Radscore Ve、Radscore Vp建立聯(lián)合模型,在訓(xùn)練集中的AUC為0.877(95%CI 0.848~0.906),在測(cè)試集的AUC為0.889(95%CI 0.800~0.978),診斷效能較好。這與Mao等[26]在DCE MRI圖像上提取的影像組學(xué)特征并結(jié)合MRI報(bào)告的淋巴結(jié)狀態(tài)構(gòu)建列線(xiàn)圖的結(jié)果相似,表明聯(lián)合模型預(yù)測(cè)乳腺癌ALN轉(zhuǎn)移有較高的效能。
本研究仍存在一定的局限性:①樣本量較小,后期會(huì)繼續(xù)開(kāi)展大樣本、多中心研究;②手動(dòng)勾畫(huà)ROI可能存在部分偏差,出現(xiàn)結(jié)果偏倚;③僅用1種分類(lèi)器構(gòu)建模型,后續(xù)可選用其他模型進(jìn)行驗(yàn)證和比較,以增加研究的全面性和準(zhǔn)確性;④未納入非腫塊型乳腺癌,后續(xù)將加入此類(lèi)患者。
綜上所述,基于Pk-DCE-MRI影像組學(xué)構(gòu)建的模型,可有效預(yù)測(cè)乳腺癌ALN狀態(tài),具有顯著臨床凈收益,為臨床預(yù)測(cè)乳腺癌ALN轉(zhuǎn)移提供了一種新穎且有效的方法,有助于在術(shù)前精準(zhǔn)評(píng)估乳腺癌淋巴結(jié)狀態(tài),為患者提供個(gè)性化診療服務(wù),進(jìn)一步提高治療效果和患者的生活質(zhì)量。
[參考文獻(xiàn)]
[1] SUNG H,F(xiàn)ERLAY J,SIEGEL R L,et al. Global cancer statistics 2020:globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249.
[2] LOIBL S,POORTMANS P,MORROW M,et al. Breast cancer[J]. Lancet,2021,397(10286):1750-1769.
[3] ROSE B S,JIANG W,PUNGLIA R S. Effect of lymph node metastasis size on breast cancer-specific and overall survival in women with node-positive breast cancer[J]. Breast Cancer Res Treat,2015,152(1):209-226.
[4] PARK K U,CAUDLE A. Management of the axilla in the patient with breast cancer[J]. Surg Clin North Am,2018,98(4):747-760.
[5] GIULIANO A E,BALLMAN K V,MCCALL L,et al. Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis:the ACOSOG Z0011 (ALLIANCE) randomized clinical trial[J]. JAMA,2017,318(10):918-926.
[6] PILGER T L,F(xiàn)RANCISCO D F,CANDIDO DOS REIS F J. Effect of sentinel lymph node biopsy on upper limb function in women with early breast cancer:a systematic review of clinical trials[J]. Eur J Surg Oncol,2021,47(7):1497-1506.
[7] MARINO M A,AVENDANO D,ZAPATA P,et al. Lymph node imaging in patients with primary breast cancer:concurrent diagnostic tools[J]. Oncologist,2020,25(2):e231-e242.
[8] CHANG J M,LEUNG J W T,MOY L,et al. Axillary nodal evaluation in breast cancer:state of the art[J]. Radiology,2020,295(3):500-515.
[9] DIESSNER J,ANDERS L,HERBERT S,et al. Evaluation of different imaging modalities for axillary lymph node staging in breast cancer patients to provide a personalized and optimized therapy algorithm[J]. J Cancer Res Clin Oncol,2023,149(7):3457-3467.
[10] CHEN Y,WANG L,DONG X,et al. Deep learning radiomics of preoperative breast MRI for prediction of axillary lymph node metastasis in breast cancer[J]. J Digit Imaging,2023,36(4):1323-1331.
[11] CHEN Y L,LI R,CHEN T W,et al. Whole-tumour histogram analysis of pharmacokinetic parameters from dynamic contrast-enhanced MRI in resectable oesophageal squamous cell carcinoma can predict T-stage and regional lymph node metastasis[J]. Eur J Radiol,2019,112:112-120.
[12] GILLIES R J,KINAHAN P E,HRICAK H. Radiomics:images are more than pictures,they are data[J]. Radiology,2016,278(2):563-577.
[13] MAO N,SHI Y,LIAN C,et al. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography[J]. Eur Radiol,2022,32(5):3207-3219.
[14] GENG X,ZHANG Y,LI Y,et al. Radiomics-clinical nomogram for preoperative lymph node metastasis prediction in esophageal carcinoma[J]. Br J Radiol,2024,97(1155):652-659.
[15] 馬芹芹,盧星如,李芷凡,等. 基于全病變MRI動(dòng)態(tài)增強(qiáng)掃描直方圖分析對(duì)小乳腺癌腋窩淋巴結(jié)轉(zhuǎn)移的預(yù)測(cè)價(jià)值[J]. 中國(guó)中西醫(yī)結(jié)合影像學(xué)雜志,2024,22(4):424-429.
[16] CHEN M,KONG C,LIN G,et al. Development and validation of convolutional neural network-based model to predict the risk of sentinel or non-sentinel lymph node metastasis in patients with breast cancer:a machine learning study[J]. EClinicalMedicine,2023,63:102176.
[17] 王贇霞,尚怡研,郭亞欣,等. DCE-MRI影像組學(xué)特征在預(yù)測(cè)乳腺癌腋窩淋巴結(jié)轉(zhuǎn)移中的價(jià)值[J]. 磁共振成像,2023,14(3):21-27.
[18] TO B,ISAAC D,ANDRECHEK E R. Studying lymphatic metastasis in breast cancer:current models,strategies,and clinical perspectives[J]. J Mammary Gland Biol Neoplasia,2020,25(3):191-203.
[19] 于海童,李芹,吳莎莎,等. MRI影像組學(xué)在乳腺癌腋窩淋巴結(jié)轉(zhuǎn)移預(yù)測(cè)中的研究進(jìn)展[J]. 磁共振成像,2023,14(7):176-180.
[20] LIU Z,F(xiàn)ENG B,LI C,et al. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics[J]. J Magn Reson Imaging,2019,50(3):847-857.
[21] DONG Y,F(xiàn)ENG Q,YANG W,et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI[J]. Eur Radiol,2018,28(2):582-591.
[22] ZHANG Q,PENG Y,LIU W,et al. Radiomics based on multimodal MRI for the differential diagnosis of benign and malignant breast lesions[J]. J Magn Reson Imaging,2020,52(2):596-607.
[23] LIU M,MAO N,MA H,et al. Pharmacokinetic parameters and radiomics model based on dynamic contrast enhanced MRI for the preoperative prediction of sentinel lymph node metastasis in breast cancer[J]. Cancer Imaging,2020,20(1):65.
[24] ZHOU X,GAO F,DUAN S,et al. Radiomic features of Pk-DCE MRI parameters based on the extensive Tofts model in application of breast cancer[J]. Phys Eng Sci Med,2020,43(2):517-524.
[25] DING J,GUO X,ZHANG M,et al. Development and validation of mathematical nomogram for predicting the risk of poor sleep quality among medical students[J]. Front Neurosci,2022,16:930617.
[26] MAO N,DAI Y,LIN F,et al. Radiomics nomogram of DCE-MRI for the prediction of axillary lymph node metastasis in breast cancer[J]. Front Oncol,2020,10:541849.
(收稿日期" 2024-07-19)