999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GCNT3對肺腺癌細胞增殖、凋亡和侵襲的影響

2025-05-31 00:00:00張青馮契靚陳榮榮王妮妮張誠實吳靈芝趙云峰
新醫學 2025年5期
關鍵詞:凋亡

【摘要】 目的 研究葡萄糖氨基轉移酶3(GCNT3)對肺腺癌細胞的增殖、凋亡、侵襲及上皮-間質轉化(EMT)的影響。方法 收集2020至2023年在上海交通大學醫學院附屬仁濟醫院浦南分院行手術治療的30例肺腺癌患者癌組織及其對應的癌旁正常組織。利用實時熒光定量PCR(RT-qPCR)檢測肺腺癌和癌旁正常組織中GCNT3的表達水平。體外培養人肺腺癌H1650細胞,分別轉染GCNT3短發夾RNA(Sh GCNT3組)和Lipofectamine 2000(NC組),采用RT-qPCR法檢測GCNT3 mRNA相對表達量、細胞計數試劑盒-8(CCK-8)法評估NC組和Sh GCNT3組細胞的增殖活力、流式細胞儀分析GCNT3對H1650細胞凋亡的影響,通過Transwell實驗檢測GCNT3對H1650細胞侵襲能力的影響,并應用蛋白免疫印跡法檢測GCNT3對H1650細胞中EMT相關蛋白的表達變化。結果 與癌旁正常組織相比,肺腺癌組織中GCNT3 mRNA相對表達量增加(P lt; 0.05)。與NC組相比,Sh GCNT3組的GCNT3 mRNA相對表達量下降、細胞增殖率降低,細胞侵襲能力減弱,EMT表型受到抑制,細胞凋亡率升高(均P lt; 0.05)。結論 GCNT3基因促進肺腺癌細胞的增殖、侵襲和EMT,同時抑制細胞凋亡。

【關鍵詞】 葡萄糖氨基轉移酶3;肺腺癌;增殖;凋亡;侵襲;上皮-間質轉化

Effect of GCNT3 on proliferation, apoptosis and invasion of lung adenocarcinoma H1650 cells

ZHANG Qing, FENG Qiliang, CHEN Rongrong, WANG Nini, ZHANG Chengshi, WU Lingzhi , ZHAO Yunfeng

(Department of Respiratory Medicine, Punan Hospital, Renji Hospital Affiliated of Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China)

Corresponding author: WU Lingzhi, E-mail: 472895226@qq.com; ZHAO Yunfeng, E-mail: yfzh71@126.com

【Abstract】 Objective To study the effect of glucosaminyl (N-acetyl) transferase 3 (GCNT3) on the proliferation, apoptosis, invasion and epithelial mesenchymal transition (EMT) of lung adenocarcinoma cells. Methods Lung adenocarcinoma and matched paracancerous tissue specimens were collected from 30 lung adenocarcinoma patients undergoing surgical resection in Punan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine from 2020 to 2023. The expression level of GCNT3 in lung adenocarcinoma and paracancerous tissues was detected using RT-qPCR. Human lung adenocarcinoma H1650 cells were cultured in vitro, and transfected with GCNT3 small interfering RNA (Sh GCNT3 group) and Lipofectamine 2000 (NC group). The relative expression level of GCNT3 mRNA was detected by RT-qPCR. The proliferation viability of cells in the NC and Sh GCNT3 groups was assessed by CCK-8 assay. The effect of GCNT3 on the apoptosis of H1650 cells was analyzed using flow cytometry. The effect of GCNT3 on the invasion ability of H1650 cells was detected by Transwell assay. The effect of GCNT3 on the changes in the expression levels of EMT-related proteins in H1650 cells was determined by Western blot. Results The relative expression level of GCNT3 mRNA in lung adenocarcinoma tissues was significantly higher compared with that in paracancerous tissues (P lt; 0.05). Compared with the NC group, the relative expression level of GCNT3 mRNA was down-regulated, the proliferation rate of cells was significantly reduced, the cell invasion ability was weakened, the EMT phenotype was inhibited, and the apoptosis rate was significantly increased in the Sh GCNT3 group (all P lt; 0.05). Conclusion GCNT3 gene promotes the proliferation, invasion and EMT of lung adenocarcinoma cells and inhibits cell apoptosis.

【Key words】 Glucosaminyl (N-acetyl) transferase 3; Lung adenocarcinoma; Proliferation; Apoptosis; Invasion;

Epithelial mesenchymal transition

肺癌是全球發病率和病死率最高的癌癥[1-3]。作為非小細胞肺癌的主要類型,近年來肺腺癌的發病率增長迅速,已超過肺鱗癌,約占肺癌病例的40%[4-6]。盡管分子靶向治療在肺腺癌的治療中取得了顯著進展,但全球范圍內該病患者的5年生存率仍不足20%[7-9]。因此,亟須尋找新的高特異度和高靈敏度的生物標志物,以改善肺腺癌的診斷、預后及治療策略。葡萄糖氨基

轉移酶3[glucosaminyl(N-acetyl)transferase 3,GCNT3]是一種黏蛋白型合酶,在聚糖合成中發揮重要作用。研究表明,GCNT3在乳腺癌、前列腺癌、結腸癌、胃癌和肝癌等多種癌癥中具有關鍵作用,并與上皮-間質轉化(epithelial-mesenchymal transition,EMT)密切相關[10-18]。GCNT3高表達可促進細胞的增殖、遷移和侵襲。然而,GCNT3在肺腺癌中的表達及其對癌細胞生物學行為的影響尚缺乏詳細研究。本研究旨在探討GCNT3基因對肺腺癌細胞增殖、凋亡和侵襲的影響,為肺腺癌的診斷和治療提供新的潛在生物標志物及分子靶點。

1 材料與方法

1.1 材 料

收集2020至2023年在本院行手術治療的30例肺腺癌患者的癌組織及其對應的癌旁正常組織。納入標準:經病理活組織檢查(活檢)確診為肺腺癌,并有完整的臨床和病理資料,癌旁正常組織取自距離腫瘤邊緣至少2 cm處,確保樣本無腫瘤細胞浸潤。排除標準:非原發性腫瘤者,合并其他腫瘤者。30例肺腺癌患者中,男14例、女16例,患者年齡為42~65歲,中位年齡為53歲。所有患者均簽署知情同意書,研究方案經醫院倫理委員會批準[批件號:(2023)醫倫第(018)號]。為避免交叉污染,采樣過程嚴格控制。組織取材后,部分樣本經4%多聚甲醛固定以保存組織結構,另一部分樣本迅速置于液氮中冷凍保存,并轉移至-80 ℃超低溫保存。

1.2 主要試劑與儀器

H1650細胞株購自美國模式菌種收集中心,DMEM培養基、胎牛血清、1%青鏈霉素購自美國Gibco公司,短發夾RNA(short hairpin RNA,ShRNA)慢病毒質粒、TRIzol試劑、SYBR Green試劑盒和Transwell小室購自德國Sigma-Aldrich公司;Lipofectamine 2000轉染試劑盒購自美國Invitrogen公司;實時熒光定量PCR(quantitative real-time polymerase chain reaction,RT-qPCR)試劑盒購自日本TaKaRa公司;RT-qPCR引物購自上海生工生物工程有限公司;Annexin V-FITC細胞凋亡檢測試劑盒、二喹啉甲酸(bicinchoninic acid,BCA)法試劑盒和細胞計數試劑盒-8(cell counting kit-8,CCK-8)購自上海碧云天生物技術公司。

1.3 細胞培養與轉染

將H1650細胞調整至1×104 /mL,每組設3個復孔,置于含10%胎牛血清和1%青鏈霉素的DMEM培養基中,在37 ℃、5% CO2的條件下進行培養和傳代。按照Lipofectamine 2000試劑操作說明,將100 nmol/L的GCNT3 ShRNA(靶序列:5'-GACCCAAAGGTAGATGATAAT-3')轉染入H1650細胞,并將細胞暴露于2 mg/L的嘌呤霉素溶液中篩選。轉染后的細胞設為Sh GCNT3組,在含1 mg/L嘌呤霉素的培養基中持續培養72 h以維持穩定性。空白對照組即Sh NC組,使用Sh NC通過Lipofectamine 2000轉染。

1.4 實時熒光定量PCR法檢測GCNT3的mRNA表達水平

每組設3個復孔,使用TRIzol試劑提取樣本總RNA,然后依據RT-qPCR試劑盒的操作說明書,將提取的RNA逆轉錄為cDNA,并以cDNA為模板進行RT-qPCR擴增。GCNT3正向引物:5'-

TCTGGGCTGCTATATGCTGC-3',GCNT3反向引物:5'-GTTGATAGACCTCTTTGCTGGAA-3';β-actin正向引物:5'-CATGTACGTTGCTATCCAGGC-3',β-actin反向引物:5'-CTCCTTAATGTCACGCACGAT-3'。產物長度控制為163 bp,β-actin用作內參基因,作為內源性對照。GCNT3基因的相對表達量采用2-ΔΔCt法計算。

1.5 細胞計數試劑盒-8法檢測細胞增殖

將Sh NC組與Sh GCNT3組H1650細胞以1×104 /mL接種于96孔培養板中,每組設3個復孔,分別在37 ℃、5% CO2條件下培養24、48、72 h。培養結束后,每孔加入10 μL CCK-8試劑,繼續孵育2 h。以磷酸鹽緩沖液(phosphate buffer saline,PBS)為空白對照。隨后使用酶標儀在450 nm

波長下測定各孔的吸光度(A)值。細胞增殖率=(A實驗孔-A空白對照孔)/(A對照孔-A空白對照孔)×100%。

1.6 流式細胞儀檢測H1650細胞凋亡

當Sh NC組與Sh GCNT3組H1650細胞融合度達70%~80%時,使用胰蛋白酶消化并用PBS洗滌,制備相應的細胞懸液。每份細胞懸液中加入5 μL Annexin V-FITC試劑,在避光條件下孵育15 min,然后加入5 μL PI(50 mg/L)染色10 min,并向每管加入400 μL結合緩沖液。最后,使用流式細胞儀進行細胞凋亡分析。凋亡率為早期凋亡細胞和晚期凋亡細胞百分率之和。每組設3個復孔。

1.7 Transwell法檢測H1650細胞的侵襲能力

將Sh NC組與Sh GCNT3組H1650細胞調整至1.5×105 cells/mL,將基質膠與DMEM培養基按1∶5的比例在冰上混合制備。然后,使用移液槍將稀釋后的基質膠緩慢均勻地鋪于Transwell上室。接著,在Transwell上室內加入300 μL細胞懸液,而下室添加500 μL含10% FBS的DMEM培養基。細胞培養48 h后,固定并染色穿過Transwell膜的細胞,在顯微鏡下進行觀察。

1.8 蛋白免疫印跡法檢測上皮-間質轉化相關蛋白的表達水平

收集各組細胞,使用PBS洗滌2次以去除上清液。隨后,使用細胞裂解液裂解細胞并提取總蛋白,用BCA試劑盒進行定量。等量的蛋白質樣品通過SDS-PAGE分離,并轉移至PVDF膜上。膜上用1%脫脂牛奶封閉1 h,然后用含0.1%吐溫-20的PBS洗膜3次,每次10 min,接著將膜與相應的一抗在4 ℃搖床上孵育過夜,再用含0.1%吐溫-20的PBS洗膜3次,每次10 min。隨后,用結合辣根過氧化物酶的二抗孵育。使用ECL化學發光液進行曝光并拍照,以GAPDH作為內參。蛋白免疫印跡法結果使用ImageJ軟件進行定量分析。

1.9 統計學方法

采用GraphPad Prism 8.0進行統計分析和圖形數據表示,所有數據以表示,2組間比較采取Student-t檢驗。每項實驗均重復進行3次,數據符合統計分析的假設。雙側P lt; 0.05為差異具有統計學意義。

2 結 果

2.1 GCNT3在癌旁正常組織和肺腺癌組織中的表達情況

RT-qPCR法結果顯示,癌旁正常組織中GCNT3 mRNA的表達量為1.00±0.23,而肺腺癌組織中GCNT3 mRNA的表達量為3.75±0.28,差異具有統計學意義(t = 41.57,P lt; 0.000 1)。見圖1。

2.2 下調GCNT3對肺腺癌H1650細胞增殖水平的影響

CCK-8法檢測結果顯示,Sh NC組在24、48和72 h的增殖率分別為(57.64±3.96)%、(76.26±

4.58)%和(92.24±5.12)%;Sh GCNT3組在相應時間點的增殖率分別為(42.32±3.72)%、(62.21±

4.62)%和(73.31±4.86)%。組間的增殖率比較差異均有統計學意義(均P lt; 0.05)。見表1。

2.3 下調GCNT3對肺腺癌H1650細胞凋亡水平的影響

RT-qPCR法結果顯示,與Sh NC組相比,Sh GCNT3組的GCNT3 mRNA表達水平下降,見圖2A。進一步流式細胞術結果顯示,Sh NC組和Sh GCNT3組的凋亡率分別為(17.46±1.95)%和(30.01±2.63)%。Sh GCNT3組的凋亡率高于Sh NC組,且差異具有統計學意義(t = 6.64,P = 0.003),見圖2B、C。

2.4 下調GCNT3對肺腺癌PC3細胞侵襲水平的影響

Transwell實驗結果顯示,2組侵襲細胞數分別為(25.12±2.30)個與(9.26±1.68)個,Sh GCNT3組細胞的侵襲能力低于Sh NC組,差異有統計學意義(t = -9.64,P lt; 0.001)。見圖3。

2.5 下調GCNT3對肺腺癌PC3細胞上皮-間質轉化表型的影響

蛋白免疫印跡法結果顯示,與NC組(0.33±0.06)比較,Sh GCNT3組E-cadherin蛋白(0.85±0.07)表達水平增加,差異有統計學意義(t = 9.77,P lt; 0.001);與NC組(0.72±0.06,0.72±0.05)比較,Sh GCNT3組Vimentin、N-cadherin蛋白(0.31±0.05,0.32±0.04)表達水平降低,差異均有統計學意義(t = -9.09,P lt; 0.001;t = -9.61,P lt; 0.001)。見圖4。

3 討 論

根據近年的全球癌癥統計數據,肺癌仍然是導致癌癥相關死亡的首要原因,約占全球癌癥死亡人數的18%[19-21]。在中國,肺癌也是癌癥病死率最高的腫瘤類型,病死率達19%,這一趨勢可能與吸煙年輕人群中肺癌發病率的增加密切相

關[22-25]。盡管近年來手術、放射治療、化學治療及靶向治療等治療手段取得了顯著進展,肺癌患者的整體預后依然不甚理想,特別是在具有轉移、復發及治療耐藥性的患者中[26-30]。肺腺癌是肺癌的一種,屬于非小細胞癌。不同于鱗狀細胞肺癌,肺腺癌較多見于女性及抽煙者。其起源于支氣管黏膜上皮,少數起源于大支氣管的黏液腺,其預后優于其他類型的肺癌[31]。探討肺腺癌放射治療耐藥的機制和潛在分子靶點,對更好地改善患者的生存預后具有重要意義[32]。

GCNT3是糖基轉移酶家族的重要成員,作為一種黏蛋白型合成酶,GCNT3催化核心2和核心4型O-聚糖的合成,并在蛋白質的O-連接糖基化過程中發揮關鍵作用[33-35]。多項研究表明,GCNT3在多種癌癥中呈現過度表達或突變,與腫瘤的發生和進展密切相關,已被視為潛在的生物標志物和治療靶點[36-37]。GCNT3在胃癌、結腸癌和卵巢癌等多種惡性腫瘤中起到推動腫瘤進展的重要作用[38-39]。然而,GCNT3在肺腺癌中的具體功能和機制仍有待深入研究。

本研究首先通過RT-qPCR檢測了30例肺腺癌及其癌旁正常組織中GCNT3的表達水平,結果顯示肺腺癌組織中GCNT3表達高于癌旁正常組織,提示GCNT3可能與肺腺癌的發生密切相關。為進一步探究GCNT3在肺腺癌進展中的作用機制,本研究通過轉染GCNT3 ShRNA構建了GCNT3敲低的H1650細胞株,評估了GCNT3的下調對肺腺癌相關惡性生物學行為的影響。結果表明,GCNT3的敲低抑制了H1650細胞的增殖,同時促進了細胞凋亡,這一過程進一步導致了細胞侵襲能力的降低。研究結果表明,GCNT3在調控細胞生長和生存中發揮著關鍵作用,可能通過影響細胞的生存和遷移機制,協調細胞增殖與凋亡的平衡。因此,GCNT3的表達可能是維持H1650細胞增殖與侵襲能力的重要因素。

EMT是一種細胞通過特定程序由上皮表型轉化為間質表型的生物學過程,在腫瘤發展、創傷修復、胚胎發育及器官纖維化過程中具有重要作用[40-42]。EMT通常伴隨著上皮細胞黏附分子E-cadherin表達的下調及間質標志物Vimentin的上調,目前被公認是推動肺腺癌轉移的重要機制[43-45]。大部分腫瘤細胞中的E-Cadherin的表達是下調的,而N-Cadherin的表達增加[46]。本研究進一步通過蛋白免疫印跡法發現,敲低GCNT3表達水平能夠抑制H1650細胞E-cadherin表達的下調、間質標志物Vimentin的上調,而N-Cadherin的表達增加,這表明GCNT3可能通過調控EMT過程促進肺腺癌的侵襲和轉移。

綜上所述,本研究證實了GCNT3在肺腺癌中的高表達,并通過調控H1650細胞的增殖、侵襲、凋亡及EMT過程,表明GCNT3在肺腺癌的發生、發展中起到至關重要的作用。GCNT3有望作為肺腺癌診斷和治療的潛在靶點,尤其是在阻止肺腺癌轉移方面具有重要的應用前景。

利益沖突聲明:本研究未受到企業、公司等第三方資助,不存在潛在利益沖突。

參 考 文 獻

[1] HAN G, SINJAB A, RAHAL Z, et al. An atlas of epithelial cell states and plasticity in lung adenocarcinoma[J]. Nature, 2024, 627(8004): 656-663. DOI: 10.1038/s41586-024-07113-9.

[2] LAUGHNEY A M, HU J, CAMPBELL N R, et al. Regenerative lineages and immune-mediated pruning in lung cancer

metastasis[J]. Nat Med, 2020, 26(2): 259-269. DOI: 10.1038/s41591-019-0750-6.

[3] NICHOLSON A G, TSAO M S, BEASLEY M B, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015[J]. J Thorac Oncol, 2022, 17(3): 362-387. DOI: 10.1016/j.jtho.2021.11.003.

[4] TRAVIS W D, ASAMURA H, BANKIER A A, et al. The IASLC lung cancer staging project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer[J]. J Thorac Oncol, 2016, 11(8): 1204-1223. DOI: 10.1016/j.jtho.2016.03.025.

[5] SINGH S, BERGSLAND E K, CARD C M, et al. Commonwealth neuroendocrine tumour research collaboration and the North American neuroendocrine tumor society guidelines for the diagnosis and management of patients with lung neuroendocrine tumors: an international collaborative endorsement and update of the 2015 European neuroendocrine tumor society expert consensus guidelines[J]. J Thorac Oncol, 2020, 15(10): 1577-1598. DOI: 10.1016/j.jtho.2020.06.021.

[6] FRIEDLAENDER A, PEROL M, BANNA G L, et al. Oncogenic alterations in advanced NSCLC: a molecular super-highway[J]. Biomark Res, 2024, 12(1): 24. DOI: 10.1186/s40364-024-00566-0.

[7] VLACHOU E, JOHNSON B A 3rd, BARABAN E, et al. Current advances in the management of nonurothelial subtypes of bladder cancer[J]. Am Soc Clin Oncol Educ Book, 2024,

44(3): e438640. DOI: 10.1200/EDBK_438640.

[8] NASO J R, RODEN A C. Recent developments in the pathology of primary pulmonary salivary gland-type tumours[J].

Histopathology, 2024, 84(1): 102-123. DOI: 10.1111/his.

15039.

[9] WEI X, LI X, HU S, et al. Regulation of ferroptosis in lung adenocarcinoma[J]. Int J Mol Sci, 2023, 24(19): 14614. DOI: 10.3390/ijms241914614.

[10] WANG Y, FANG X, XIE H, et al. GCNT3 promotes hepatocellular carcinoma progression and EMT by activating the PI3K/AKT pathway[J]. Biochem Genet, 2024. DOI: 10.1007/s10528-024-10830-5.

[11] ZHANG Y, XIAO P, HU X. LINC00511 enhances LUAD malignancy by upregulating GCNT3 via miR-195-5p[J]. BMC Cancer, 2022, 22(1): 389. DOI: 10.1186/s12885-022-09459-7.

[12] ZHAO T, ZHAO X, QIAN K, et al. Radiotherapy prognosis-associated gene GCNT3 promotes the proliferation, migration and invasion of lung adenocarcinoma cells[J]. Heliyon, 2022, 8(12): e12100. DOI: 10.1016/j.heliyon.2022.e12100.

[13] QIU K, WU T, DONG B, et al. GCNT3 regulated MUC13 to promote the development of hepatocellular carcinoma through the GSK3β/β-catenin pathway[J]. Dig Liver Dis, 2024, 56(9): 1572-1581. DOI: 10.1016/j.dld.2024.01.198.

[14] YAMAMOTO D, SASAKI K, KOSAKA T, et al. Functional analysis of GCNT3 for cell migration and EMT of castration-resistant prostate cancer cells[J]. Glycobiology, 2022,

32(10): 897-908. DOI: 10.1093/glycob/cwac044.

[15] LIU J, ZHANG Y, LIU W, et al. miR-BART1-5p targets core 2β-1, 6-acetylglucosaminyltransferase GCNT3 to inhibit cell proliferation and migration in EBV-associated gastric cancer[J]. Virology, 2020, 541: 63-74. DOI: 10.1016/j.virol.2019.12.004.

[16] FERNáNDEZ L P, SáNCHEZ-MARTíNEZ R, VARGAS T, et al. The role of glycosyltransferase enzyme GCNT3 in colon and ovarian cancer prognosis and chemoresistance[J]. Sci Rep, 2018, 8(1): 8485. DOI: 10.1038/s41598-018-26468-4.

[17] PASTUSHENKO I, BLANPAIN C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3): 212-226. DOI: 10.1016/j.tcb.2018.12.001.

[18] HUANG Y, HONG W, WEI X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and

metastasis[J]. J Hematol Oncol, 2022, 15(1): 129. DOI: 10.1186/s13045-022-01347-8.

[19] HENDRIKS L E L, REMON J, FAIVRE-FINN C, et al. Non-small-cell lung cancer[J]. Nat Rev Dis Primers, 2024, 10(1): 71. DOI: 10.1038/s41572-024-00551-9.

[20] LOPICCOLO J, GUSEV A, CHRISTIANI D C, et al. Lung cancer in patients who have never smoked-an emerging

disease[J]. Nat Rev Clin Oncol, 2024, 21(2): 121-146. DOI: 10.1038/s41571-023-00844-0.

[21] WANG Z, ZHANG Q, WANG C, et al. Multiple primary lung cancer: updates and perspectives[J]. Int J Cancer, 2024,

155(5): 785-799. DOI: 10.1002/ijc.34994.

[22] KONDO K K, RAHMAN B, AYERS C K, et al. Lung cancer diagnosis and mortality beyond 15 years since quit in individuals with a 20+ pack-year history: a systematic review[J]. CA Cancer J Clin, 2024, 74(1): 84-114. DOI: 10.3322/caac.

21808.

[23] HE Z, XU Y, RAO Z, et al. The role of α7-nAChR-mediated PI3K/AKT pathway in lung cancer induced by nicotine[J]. Sci Total Environ, 2024, 912: 169604. DOI: 10.1016/j.scitotenv.

2023.169604.

[24] KRATZER T B, BANDI P, FREEDMAN N D, et al. Lung cancer statistics, 2023[J]. Cancer, 2024, 130(8): 1330-1348. DOI: 10.1002/cncr.35128.

[25] WOLF A M D, OEFFINGER K C, SHIH T Y, et al. Screening for lung cancer: 2023 guideline update from the American Cancer Society[J]. CA Cancer J Clin, 2024, 74(1): 50-81. DOI: 10.3322/caac.21811.

[26] STRANGE C D, STRANGE T A, ERASMUS L T, et al. Imaging in lung cancer staging[J]. Clin Chest Med, 2024, 45(2): 295-305. DOI: 10.1016/j.ccm.2024.02.004.

[27] GUO H, ZHANG J, QIN C, et al. Advances and challenges of first-line immunotherapy for non-small cell lung cancer: a review[J]. Medicine, 2024, 103(3): e36861. DOI: 10.1097/MD.0000000000036861.

[28] SU P L, CHAKRAVARTHY K, FURUYA N, et al. DLL3-guided therapies in small-cell lung cancer: from antibody-drug conjugate to precision immunotherapy and radioimmunotherapy[J].

Mol Cancer, 2024, 23(1): 97. DOI: 10.1186/s12943-024-02012-z.

[29] CIARDIELLO F, HIRSCH F R, PIRKER R, et al. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer[J]. Cancer Treat Rev, 2024, 122: 102664. DOI: 10.1016/j.ctrv.2023.102664.

[30] BANKS E, YAZIDJOGLOU A, BROWN S, et al. Electronic cigarettes and health outcomes: umbrella and systematic review of the global evidence[J]. Med J Aust, 2023, 218(6): 267-275. DOI: 10.5694/mja2.51890.

[31] 田甜, 陳港軍, 胡創, 等. PIK3R1基因低甲基化在肺腺癌中的臨床意義[J]. 暨南大學學報(自然科學與醫學版), 2023, 44(4): 358-370. DOI: 10.11778/j.jdxb.20230049.

TIAN T, CHEN G J, HU C, et al. Clinical significance of PIK3R1 gene hypomethylation in lung adenocarcinoma[J]. J Jinan Univ Nat Sci (Med Ed), 2023, 44(4): 358-370. DOI: 10.11778/j.jdxb.20230049.

[32] 錢晶, 何澤來, 田校源, 等. 68例EGFR突變型肺腺癌腦轉移患者早期顱腦放療對比延遲放療療效分析[J]. 中華全科醫學, 2021, 19(12): 1995-1998, 2027. DOI: 10.16766/j.cnki.issn.1674-4152.002219.

QIAN J, HE Z L, TIAN X Y, et al. Efficacy analysis of early radiotherapy versus delayed radiotherapy in 68 cases of EGFR-mutant lung adenocarcinoma with brain metastases[J]. Chin J Gen Pract, 2021, 19(12): 1995-1998, 2027. DOI: 10.16766/j.cnki.issn.1674-4152.002219.

[33] GUPTA R, LEON F, THOMPSON C M, et al. Global analysis of human glycosyltransferases reveals novel targets for pancreatic cancer pathogenesis[J]. Br J Cancer, 2020, 122(11): 1661-1672. DOI: 10.1038/s41416-020-0772-3.

[34] RAO C V, JANAKIRAM N B, MOHAMMED A. Molecular pathways: mucins and drug delivery in cancer[J]. Clin Cancer Res, 2017, 23(6): 1373-1378. DOI: 10.1158/1078-0432.CCR-16-0862.

[35] XI X, WANG J, QIN Y, et al. Glycosylated modification of MUC1 maybe a new target to promote drug sensitivity and efficacy for breast cancer chemotherapy[J]. Cell Death Dis, 2022,

13(8): 708. DOI: 10.1038/s41419-022-05110-2.

[36] AGOSTINI A, GUERRIERO I, PIRO G, et al. Talniflumate abrogates mucin immune suppressive barrier improving efficacy of gemcitabine and nab-paclitaxel treatment in pancreatic

cancer[J]. J Transl Med, 2023, 21(1): 843. DOI: 10.1186/s12967-023-04733-z.

[37] 楊永泉, 田永靖, 龐健, 等. 腫瘤相關巨噬細胞通過誘導GCNT3上調促進胃癌細胞上皮-間質轉化[J]. 中國免疫學雜志, 2023, 39(3): 483-488. DOI: 10.3969/j.issn.1000-484X.2023.03.006.

YANG Y Q, TIAN Y J, PANG J, et al. Tumor-associated macrophages promote epithelial-mesenchymal transition of gastric cancer cells by inducing GCNT3 up-regulation[J]. Chin J Immunol, 2023, 39(3): 483-488. DOI: 10.3969/j.issn.1000-484X.2023.03.006.

[38] 劉陜西, 葉鈞, 尚楊楊, 等. GCNT3在結直腸癌中的表達及臨床意義[J]. 第三軍醫大學學報, 2019, 41(10): 913-917. DOI: 10.16016/j.1000-5404.201812043.

LIU S X, YE J, SHANG Y Y, et al. Expression and clinical significance of GCNT3 in colorectal cancer[J]. J Third Mil Med Univ, 2019, 41(10): 913-917. DOI: 10.16016/j.1000-5404.201812043.

[39] 孫曉燕, 劉暢, 張華, 等. GCNT3表達在非小細胞肺癌中的臨床意義[J]. 中國腫瘤臨床, 2019, 46(3): 111-116. DOI: 10.3969/j.issn.1000-8179.2019.03.377.

SUN X Y, LIU C, ZHANG H, et al. Clinical significance of GCNT3 expression in non-small cell lung cancer[J]. Chin J Clin Oncol, 2019, 46(3): 111-116. DOI: 10.3969/j.issn.1000-

8179.2019.03.377.

[40] SAITOH M. Transcriptional regulation of EMT transcription factors in cancer[J]. Semin Cancer Biol, 2023, 97: 21-29. DOI: 10.1016/j.semcancer.2023.10.001.

[41] AKHMETKALIYEV A, ALIBRAHIM N, SHAFIEE D, et al. EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin[J]. Mol Cancer, 2023, 22(1): 90. DOI: 10.1186/s12943-023-01793-z.

[42] AKRIDA I, PAPADAKI H. Adipokines and epithelial-mesenchymal transition (EMT) in cancer[J]. Mol Cell Biochem, 2023, 478(11): 2419-2433. DOI: 10.1007/s11010-023-04670-x.

[43] SALEEM H M, RAMAIAH P, GUPTA J, et al. Nanotechnology-empowered lung cancer therapy: from EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis[J]. Environ Res, 2023, 232: 115942. DOI: 10.1016/j.envres.2023.115942.

[44] XIE S, WU Z, QI Y, et al. The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges[J]. Biomed Pharmacother, 2021, 138: 111450. DOI: 10.1016/j.biopha.2021.111450.

[45] MAK M P, TONG P, DIAO L, et al. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition[J]. Clin Cancer Res, 2016, 22(3): 609-620. DOI: 10.1158/1078-0432.CCR-15-0876.

[46] 陳文燦, 周倜. N-鈣黏蛋白功能研究進展[J]. 中山大學學報(醫學科學版), 2024, 45(6): 866-875. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20241030.002.

CHEN W C, ZHOU T. Research progress in N-cadherin function[J]. J Sun Yat-sen Univ (Med Sci), 2024, 45(6): 866-875. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20241030.002.

(責任編輯:林燕薇)

猜你喜歡
凋亡
普伐他汀對人胰腺癌細胞SW1990的影響及其聯合順鉑的抗瘤作用
奧曲肽對急性胰腺炎患者外周血中性粒細胞凋亡和炎癥因子的影響
普伐他汀對人胰腺癌細胞SW1990的影響及其聯合順鉑的抗瘤作用
普伐他汀對人胰腺癌細胞SW1990的影響及其聯合順鉑的抗瘤作用
普伐他汀對人胰腺癌細胞SW1990的影響及其協同吉西他濱的抑瘤作用
細胞自噬與人卵巢癌細胞對順鉑耐藥的關系
右美托咪定混合氯胺酮對新生大鼠離體海馬細胞凋亡的影響
Livin和Survivin在卵巢癌中的表達及相關性研究
雷帕霉素對K562細胞增殖和凋亡作用的影響
科技視界(2016年5期)2016-02-22 19:03:28
索拉非尼對胃癌細胞MGC80—3抑制作用實驗研究
主站蜘蛛池模板: 99热最新网址| 高清大学生毛片一级| 亚洲Va中文字幕久久一区 | 欧美精品一区在线看| 114级毛片免费观看| 9cao视频精品| 激情综合激情| 玖玖精品在线| 最新国产高清在线| 91丝袜乱伦| 91毛片网| 91精品人妻一区二区| 亚洲中文字幕久久无码精品A| 无码电影在线观看| 丁香五月亚洲综合在线| 四虎成人精品| 女人18毛片一级毛片在线 | 欧美在线一级片| 在线看片中文字幕| 日韩小视频网站hq| 国产色婷婷| 亚洲天堂视频在线观看| 中文字幕亚洲乱码熟女1区2区| 欧美综合激情| 激情综合网激情综合| 999国内精品久久免费视频| 亚洲无码高清视频在线观看| 亚洲品质国产精品无码| 四虎成人免费毛片| 日韩欧美国产成人| 毛片大全免费观看| 国产不卡国语在线| 国产午夜无码专区喷水| 激情亚洲天堂| 毛片免费在线| 亚洲天堂高清| 欧美色图第一页| 怡春院欧美一区二区三区免费| 日韩美毛片| 欧美精品v欧洲精品| 国产在线啪| 欧美黄网在线| 夜夜高潮夜夜爽国产伦精品| 国产精品自在在线午夜区app| 欧洲日本亚洲中文字幕| 99re在线视频观看| 男女男免费视频网站国产| 久久 午夜福利 张柏芝| 欧美激情视频一区| 亚洲精品大秀视频| 日本在线视频免费| 视频二区国产精品职场同事| 日日拍夜夜操| 国产网站在线看| 第九色区aⅴ天堂久久香| 国产成人精品第一区二区| 国产成人精品视频一区视频二区| 99久久精品免费观看国产| 久久精品电影| 新SSS无码手机在线观看| 亚洲综合狠狠| 在线亚洲精品自拍| 九九九国产| 亚洲无码日韩一区| 亚洲色欲色欲www在线观看| 成人午夜视频网站| 精品日韩亚洲欧美高清a | 亚洲国产一区在线观看| 一本色道久久88亚洲综合| 在线观看视频一区二区| 91精品国产丝袜| 中文字幕久久精品波多野结| 久久精品午夜视频| 内射人妻无码色AV天堂| 青青操视频在线| 国产 在线视频无码| 欧美日韩国产综合视频在线观看| 日韩精品专区免费无码aⅴ| 91精品人妻一区二区| 国产欧美自拍视频| 午夜福利无码一区二区| 97视频在线精品国自产拍|