Functional Neuroimaging Evidence for Hyperarousal in Insomnia Disorder/LONG Jinhao, LIN Qianglong, LIU Junbin, TIAN Junzhang. /Medical Innovation of China, 2025, 22(12): 174-179
[Abstract]Insomnia disorder (ID) is the most common sleep disorder, which seriously endangers people's quality oflife andphysicaland mentalhealth.There isnounifiedconclusionon its pathogenesis,and hyperarousal is themain theory to explain thepathogenesis of ID at present.Thedevelopment of neuroimaging enables it to study the brain mechanism at thefunctionallevel.Thisreviewaims to clarify the evidence of hyperarousal in function and metabolism of IDpatients by integrating the existing functionalneuroimaging studies.Although theresults are different,mostofthemshow thatID patientshave experienceda state ofhigh excitement,andthese findings support that hyperarousal plays a key role in the pathophysiology of ID.In thefuture, we should clarify the mechanismof hyperarousalinthe wholediseaseprocessthrough longitudinal research and promote the application of neuroimaging in ID diagnosis and prognosis evaluation.
[Key words] Insomnia disorder Hyperarousal Functional neuroimaging
First-author's address: Department of Nuclear Medicine, the Afiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China doi: 10.3969/j.issn.1674-4985.2025.12.042
失眠障礙(insomniadisorder,ID)被定義為一種頻繁且持續(xù)的睡眠起始或維持困難、早醒且難以再次人睡,伴有明顯的日間功能受損。它是最普遍的睡眠障礙,可影響全球約 22.1% 的人群。ID不僅嚴(yán)重影響生活質(zhì)量,而且還會(huì)提高神經(jīng)精神類疾病(如焦慮、抑郁)、內(nèi)分泌疾病、心血管疾病等的發(fā)病風(fēng)險(xiǎn)。ID具體的發(fā)病機(jī)制尚不清楚,但目前最廣泛認(rèn)可的神經(jīng)生物學(xué)假說(shuō)是過(guò)度覺(jué)醒理論(hyperarousaltheory,HT)。該理論表明,無(wú)論白天還是黑夜,ID患者表現(xiàn)為過(guò)度的生理覺(jué)醒(代謝率、皮質(zhì)醇升高)認(rèn)知覺(jué)醒(反當(dāng)、擔(dān)憂)和皮層覺(jué)醒(腦部活躍),其中,皮層覺(jué)醒被視為ID病理生理學(xué)的核心,因?yàn)樗鼤?huì)直接導(dǎo)致認(rèn)知改變?。失眠的HT得到了不同領(lǐng)域的多角度研究的支持
目前,功能神經(jīng)影像學(xué)已成為研究大腦中特定區(qū)域活動(dòng)與特定神經(jīng)功能關(guān)系的有效手段,為ID 的HT提供了有力證據(jù)。因此,本綜述旨在通過(guò)功能神經(jīng)成像方法探索的ID患者過(guò)度覺(jué)醒的功能影像學(xué)依據(jù),包括腦電圖(electroencephalography,EEG)單光子發(fā)射計(jì)算機(jī)斷層掃描(single-photonemissioncomputedtomography,SPECT)、正電子發(fā)射斷層掃描(positron emission tomography,PET)功能磁共振成像(functionalmagnetic resonanceimaging,fMRI)、磁共振波譜(magneticresonancespectroscopy,MRS)。盡管這些成像技術(shù)物理基礎(chǔ)不同,但都提供了與神經(jīng)元活動(dòng)相關(guān)的代謝過(guò)程或?qū)Υ竽X神經(jīng)激活、交互變化的有力評(píng)估,為探索ID的HT提供堅(jiān)實(shí)的依據(jù)。
1 EEG
EEG是多導(dǎo)睡眠監(jiān)測(cè)的主要測(cè)量方法,它量化了與突觸后電位相關(guān)的電壓變化,從中可以推斷出神經(jīng)元的活動(dòng)。使用EEG功率譜分析的研究表明,失眠患者在清醒、非快速動(dòng)眼(non-rapideye movement,NREM)睡眠或快速動(dòng)眼(rapid eyemovement,REM)睡眠期間[6-7,大腦激活會(huì)增強(qiáng)。主要體現(xiàn)為在整個(gè)清醒和睡眠過(guò)程中,ID患者 β 波功率增加。此外,ID患者在清醒時(shí)還表現(xiàn)出0和γ 波功率增加;REM睡眠期間 α 和 σ功率增加;以及NREM睡眠期間δ功率降低和θ、α 和 σ 功率增加有關(guān)。清醒期間高頻EEG活動(dòng)增加和睡眠期間(尤其是NREM)“覺(jué)醒樣”EEG活動(dòng)增加可能是由于抑制減少及特定大腦區(qū)域的興奮增加,這是ID患者皮層過(guò)度覺(jué)醒的良好標(biāo)志物4。然而,這些EEG研究的一個(gè)主要局限性是無(wú)法確定增強(qiáng)的腦活動(dòng)主要發(fā)生在哪個(gè)腦區(qū),因此需要其他的功能神經(jīng)影像學(xué)技術(shù)來(lái)與EEG形成互補(bǔ),從而更全面地表征ID的病理生理機(jī)制。
2 SPECT/PET
SPECT是一種可用于量化大腦區(qū)域腦血流灌注的技術(shù),它將發(fā)射 γ 射線的示蹤劑(如
)注射到血流中,然后使用 γ 相機(jī)進(jìn)行檢測(cè)。通過(guò)使用SPECT,Nardo等發(fā)現(xiàn)創(chuàng)傷后應(yīng)激障礙患者較多的睡眠障礙與中腦、楔前葉和后島葉中局部腦血流量增加有關(guān),他們認(rèn)為這些區(qū)域活動(dòng)的增加反映了與創(chuàng)傷重溫相關(guān)的生理喚醒增強(qiáng),從而導(dǎo)致失眠。失眠過(guò)度覺(jué)醒模型的合理假設(shè)是血流與“覺(jué)醒”呈正相關(guān),該研究符合HT。
PET可以通過(guò)檢測(cè)注射到血液中的示蹤劑濃度,有效地預(yù)測(cè)腦葡萄糖代謝率(cerebralglucosemetabolic rate,CMRGlu)、神經(jīng)遞質(zhì)受體的密度。然而,由于其價(jià)格昂貴且具有侵入性,迄今為止,運(yùn)用這種技術(shù)的失眠研究只是功能成像的一小部分。支持HT的第一個(gè)開(kāi)創(chuàng)性神經(jīng)影像學(xué)數(shù)據(jù)來(lái)源于Nofzinger等%的PET研究,該研究發(fā)現(xiàn)ID患者在睡眠和清醒狀態(tài)下總體CMRGlu更高,直觀地為我們提供了ID患者在各狀態(tài)下的全腦高代謝模式;并且從清醒到睡眠狀態(tài)時(shí),促醒區(qū)域、情緒調(diào)節(jié)系統(tǒng)和認(rèn)知系統(tǒng)的相對(duì)代謝率下降幅度較小,該結(jié)果被廣泛引用為對(duì)失眠過(guò)度覺(jué)醒模型的支持性研究。然而,由于其樣本量小,可靠性較低。很快,Nofzinger等\"擴(kuò)展了他們的發(fā)現(xiàn),他們發(fā)現(xiàn)睡眠開(kāi)始后清醒與NREM期多個(gè)腦區(qū)的糖代謝增加有關(guān),這種變化導(dǎo)致ID患者的喚醒閾值降低和/或增加失眠者的覺(jué)醒感,從而更易蘇醒。Kay等「的研究結(jié)果也支持了Nofzinger的觀點(diǎn),他們的研究顯示原發(fā)性失眠(primaryinsomnia,PI)患者在覺(jué)醒和NREM期間,較低的睡眠效率與額、頂、枕葉和小腦區(qū)域較高的相對(duì)CMRGlu相關(guān),并且PI患者在NREM期與覺(jué)醒狀態(tài)下的腦代謝活動(dòng)差異較小。此外,Kay等3還指出PI患者的主觀與客觀睡眠測(cè)量存在差異,而這種差異(主觀強(qiáng)于客觀)與右側(cè)前島葉和中/后扣帶回皮層NREM睡眠期間相對(duì)CMRGlu的顯著升高相關(guān)。總的來(lái)說(shuō),上述結(jié)果突出了睡眠、覺(jué)醒狀態(tài)下ID的過(guò)度覺(jué)醒狀態(tài),雖然SPECT/PET目前已經(jīng)基本被fMRI成像取代,但它們無(wú)疑為失眠的HT提供了客觀的證據(jù)。
3 fMRI
fMRI具有高空間分辨率,能通過(guò)利用脫氧和含氧血液的不同磁性來(lái)間接評(píng)估大腦神經(jīng)元活動(dòng)[4]fMRI成像分為靜息態(tài)fMRI(resting-state fMRI,rs-fMRI)及任務(wù)態(tài)fMRI(task-basedfMRI,tb-fMRI)。在局部腦活動(dòng)方面,rs-fMRI主要指標(biāo)包括區(qū)域一致性(regional homogeneity,ReHo)、低頻振蕩幅度(amplitude of low frequency fluctuations, ALFF);而tb-fMRI常通過(guò)激活區(qū)檢測(cè)來(lái)評(píng)估功能。在腦功能交互方面,這兩種模態(tài)的fMRI最常用的指標(biāo)均為功能連接(functionalconnectivity,F(xiàn)C)。
3.1局部腦區(qū)神經(jīng)活動(dòng)異常
大量研究都表明ID患者存在多個(gè)ReHo值增加的腦區(qū)。例如, Wu 等[15]發(fā)現(xiàn)ID患者左側(cè)梭狀回、左側(cè)楔前葉和右側(cè)扣帶回的ReHo增加,腦活動(dòng)的增加與ID患者皮層高水平的覺(jué)醒一致。左側(cè)梭狀回ReHo增加也得到了Feng等研究的驗(yàn)證。Li等的研究表明慢性失眠患者右側(cè)楔前葉動(dòng)態(tài)ReHo增加。上述腦區(qū)ReHo值的升高表明ID患者在處理特定信息時(shí)變得更加一致或活躍,支持了HT。除了ReHo方面的大量證據(jù),一些基于ALFF的研究也為HT提供了支持。Dai等發(fā)現(xiàn)PI患者的葉和枕葉ALFF值升高,該結(jié)果與Yang等[的研究一致,他們的結(jié)果顯示慢性失眠患者的 ALFF值較高,主要是上回和中回。Jiang等[20]也發(fā)現(xiàn)了左側(cè)島葉和右側(cè)杏仁核的ALFF值增加,并且右側(cè)杏仁核活動(dòng)增加與較高的高覺(jué)醒量表評(píng)分之間存在正相關(guān)趨勢(shì)。杏仁核功能活動(dòng)的增加可能會(huì)引起對(duì)外部威脅和內(nèi)在沖動(dòng)的高度警覺(jué),進(jìn)而導(dǎo)致心理認(rèn)知過(guò)度覺(jué)醒[2%。此外,ID 患者在右側(cè)額中回、Cerebelum_4_5_L的 ALFF 值也增加[15,21]。ID患者上述多個(gè)腦區(qū)ALFF值增高表明神經(jīng)元活動(dòng)興奮性增強(qiáng),符合HT。通過(guò)使用tb-fMRI,研究人員發(fā)現(xiàn)與睡眠相關(guān)的負(fù)面情緒刺激會(huì)導(dǎo)致香仁核及肼抵體、雙側(cè)前放射冠、左側(cè)楔前葉的活動(dòng)水平增加[22-23,而想到可恥的個(gè)人事件會(huì)導(dǎo)致背側(cè)前扣帶回的活動(dòng)增加[24],上述結(jié)果或許與睡眠不良和消極情緒喚醒的惡性循環(huán)有關(guān),即睡眠不足導(dǎo)致情緒喚醒增強(qiáng),這又反過(guò)來(lái)導(dǎo)致生理上的過(guò)度覺(jué)醒、睡眠開(kāi)始或維持困難[22]。此外,當(dāng)對(duì)ID患者進(jìn)行積極情緒刺激(默電影)時(shí),其神經(jīng)獎(jiǎng)勵(lì)網(wǎng)絡(luò)中的大腦活動(dòng)增加,并且右側(cè)杏仁核腦網(wǎng)絡(luò)的集群最大值僅與過(guò)度覺(jué)醒評(píng)分相關(guān)[25]。腦血氧水平依賴信號(hào)的血流動(dòng)力學(xué)特征反映了潛在的代謝需求,失眠患者上述多個(gè)腦區(qū)的ReHo、ALFF值增加及腦區(qū)的激活證明在這些腦區(qū)表現(xiàn)出過(guò)度的自發(fā)性神經(jīng)活動(dòng),支持HT的大腦神經(jīng)元活動(dòng)模式。
3.2 FC異常
過(guò)往研究通過(guò)使用FC,已經(jīng)觀察到與失眠相關(guān)的過(guò)度覺(jué)醒狀態(tài)在廣泛的皮層及皮層下神經(jīng)網(wǎng)絡(luò)中尤為明顯,主要包括突顯網(wǎng)絡(luò)(saliencenetwork,SN)、默認(rèn)網(wǎng)絡(luò)(default mode network,DMN)、上升喚醒網(wǎng)絡(luò)(ascending arousal network,AAN)。這些與睡眠的啟動(dòng)或維持相關(guān)的睡眠一覺(jué)醒系統(tǒng)的失調(diào)可能是失眠的潛在原因。
SN相關(guān)的FC一直是眾多ID患者功能神經(jīng)影像學(xué)研究的主題,SN是一種由大腦邊緣區(qū)域(即杏仁核、前島葉、前扣帶回)組成的靜息態(tài)腦網(wǎng)絡(luò),負(fù)責(zé)監(jiān)測(cè)和整合來(lái)自內(nèi)部和外部環(huán)境的刺激,在情緒調(diào)節(jié)、認(rèn)知控制、疼痛感知等過(guò)程中至關(guān)重要[26。杏仁核和前島葉是 SN 的關(guān)鍵節(jié)點(diǎn)7,27]。rs-fMRI研究顯示,在ID中,杏仁核與其他區(qū)域之間的連接性增加,例如后扣帶回、枕葉、楔前葉和角回[20,28]。杏仁核負(fù)責(zé)處理并記憶情緒信息,然后產(chǎn)生反應(yīng)[27]。過(guò)度活躍的杏仁核可能會(huì)導(dǎo)致對(duì)睡眠相關(guān)刺激的強(qiáng)烈負(fù)面反應(yīng),從而導(dǎo)致ID患者的過(guò)度覺(jué)醒。Li等29使用前島葉作為種子點(diǎn),發(fā)現(xiàn)在NREM睡眠中,前島葉-皮層網(wǎng)絡(luò)的超連通性可能為ID患者的興奮性增高或抑制性減弱提供新的證據(jù)。島葉是內(nèi)感受的關(guān)鍵樞紐,在感知體內(nèi)的生理變化(如呼吸、心跳)中發(fā)揮重要作用[30,其增強(qiáng)的FC可能導(dǎo)致對(duì)身體感知過(guò)度,從而處于高度警覺(jué)狀態(tài),反映了HT中的認(rèn)知過(guò)度覺(jué)醒。此外,前扣帶回在大腦的情感回路中扮演重要角色[4,ID患者在清醒[和睡眠[狀態(tài)下前扣帶回增加的FC與情緒過(guò)度興奮有關(guān),并且ID患者情緒回路中更高的同步性可能代表情緒信息流的增強(qiáng)4。綜上所述,SN內(nèi)重要節(jié)點(diǎn)的活動(dòng)增加與更高的喚醒水平有關(guān)。此外,Wei等33的動(dòng)態(tài)FC研究顯示左側(cè)執(zhí)行控制網(wǎng)絡(luò)(executive-controlnetwork,ECN)和前SN之間的FC變異性降低;Li等4發(fā)現(xiàn)DMN中的節(jié)點(diǎn)與SN中的節(jié)點(diǎn)的正向連接減少,我們知道SN在DMN與ECN之間擔(dān)任樞紐與轉(zhuǎn)換的角色34,上述網(wǎng)絡(luò)間連接的減弱表明ID患者在靜息狀態(tài)下網(wǎng)絡(luò)間的交互不靈活,導(dǎo)致響應(yīng)不斷變化的環(huán)境和需求的能力受損,對(duì)外部刺激產(chǎn)生過(guò)度反應(yīng),這種持續(xù)性的高喚醒狀態(tài)進(jìn)一步加重了睡眠問(wèn)題。
DMN主要包括后扣帶皮層、楔前葉、內(nèi)側(cè)前額葉皮層、海馬、壓后皮層。大腦在靜息狀態(tài)下執(zhí)行的一些基本認(rèn)知活動(dòng)依賴于DMN,它在內(nèi)在自發(fā)的認(rèn)知心理活動(dòng)(情景記憶、維持意識(shí)、調(diào)節(jié)情緒、自我反思)及外部環(huán)境探索性監(jiān)視(監(jiān)測(cè)和反映環(huán)境變化、維持警覺(jué)狀態(tài))方面具有不可替代的價(jià)值[4。多個(gè)研究報(bào)道了DMN各腦區(qū)之間及與其他腦區(qū)的FC增加,如內(nèi)側(cè)前額葉皮層-伏隔核,海馬-額中回[35-36]。此外,Ma等[37的研究表明,從短期失眠到慢性失眠,海馬部分亞區(qū)(CA1/cHipp)與雙側(cè)內(nèi)側(cè)前額葉皮層的FC呈逐漸增加的趨勢(shì),并且右側(cè)CA1-雙側(cè)內(nèi)側(cè)前額葉皮層的FC與失眠嚴(yán)重指數(shù)評(píng)分呈正相關(guān)。上述DMN內(nèi)部及DMN與其他腦網(wǎng)絡(luò)之間增強(qiáng)的FC意味著個(gè)體處于靜息狀態(tài)時(shí),負(fù)責(zé)自我反思和內(nèi)省等認(rèn)知活動(dòng)的DMN仍然活躍,這可能與ID患者認(rèn)知和心理的過(guò)度覺(jué)醒有關(guān)。
AAN由促進(jìn)喚醒的腦干被蓋(包括藍(lán)斑)和皮層下核(丘腦、下丘腦、基底前腦)組成{3]。Gong等的研究表明CI患者不僅表現(xiàn)出AAN內(nèi)的FC增加,還表現(xiàn)出AAN與DMN、小腦、感覺(jué)運(yùn)動(dòng)網(wǎng)絡(luò)(sensory-motor network,SMN)和背側(cè)注意網(wǎng)絡(luò)(dorsal attentionalnetwork,DAN)之間的FC增加,這些發(fā)現(xiàn)表明基于AAN的網(wǎng)絡(luò)內(nèi)和網(wǎng)絡(luò)間的功能耦合在ID患者中發(fā)生了改變,即促進(jìn)覺(jué)醒的大腦區(qū)域(上行喚醒系統(tǒng))和皮層區(qū)域之間的信息傳遞增加。藍(lán)斑是AAN的核心節(jié)點(diǎn),過(guò)往研究表明ID患者與藍(lán)斑-去甲腎上腺素能系統(tǒng)FC增加的區(qū)域主要位于參與視覺(jué)和觸覺(jué)的后感覺(jué)皮層[39-40,這些發(fā)現(xiàn)可以闡明ID患者對(duì)觸覺(jué)、視覺(jué)刺激的感知過(guò)敏,支持ID患者后感覺(jué)皮層過(guò)度覺(jué)醒狀態(tài)的概念。此外,丘腦是上行網(wǎng)狀激活系統(tǒng)重要的組成部分,能接受來(lái)自腦干的膽堿能投射,通過(guò)與皮層的廣泛交流來(lái)調(diào)節(jié)睡眠-覺(jué)醒周期[41-42]。大量 rs-fMRI研究表明,丘腦內(nèi)部各亞區(qū)、丘腦與大腦皮層、小腦的FC異常4。雖然結(jié)果不完全一致,但大多研究顯示ID患者清醒時(shí)的丘腦-皮層連接相較于睡眠良好人群更積極[42-43],這表明ID患者的大腦在夜間清醒時(shí)處于更活躍、更敏感的狀態(tài)。人睡后,ID患者的丘腦-皮層連接性低于健康對(duì)照組(更負(fù)),表明ID患者在睡眠期間,尤其是淺睡眠時(shí),可能更容易受到干擾,喚醒水平更高[2]。基于tb-fMRI成像研究也發(fā)現(xiàn),ID患者在執(zhí)行控制過(guò)程中表現(xiàn)出左丘腦與額中回、枕回的超連接,研究人員認(rèn)為ID中皮層的過(guò)度覺(jué)醒可能有助于更有效地執(zhí)行控制[4。綜上所述,AAN包含多種促進(jìn)覺(jué)醒的神經(jīng)遞質(zhì)(例如單胺能、膽堿能),ID患者AAN網(wǎng)絡(luò)信號(hào)的增加可能導(dǎo)致皮層興奮性增加,最終影響睡眠的開(kāi)始和維持。
除了上述網(wǎng)絡(luò)中的腦區(qū)的FC的改變,ID患者還存在廣泛覆蓋于全腦的增高的FC。如ECN、SMN、DAN中的重要節(jié)點(diǎn)也發(fā)現(xiàn)了增強(qiáng)的
正連接的增加表明功能強(qiáng)化,這為ID患者的HT提供了一個(gè)較為直觀的解釋。
4 MRS
MRS是一種可以量化特定組織中的代謝物濃度,并生成不同信號(hào)強(qiáng)度光譜的非侵入性神經(jīng)成像技術(shù),能在形態(tài)學(xué)改變之前從生化代謝的角度監(jiān)測(cè)其微觀改變。在ID光譜研究中,最常用和次常用的代謝物分別是抑制性神經(jīng)遞質(zhì) γ- 氨基丁酸(gammaaminobutyricacid,GABA)和興奮性神經(jīng)遞質(zhì)谷氨酸(glutamicacid,Glu)。
GABA是中樞神經(jīng)系統(tǒng)主要的抑制性神經(jīng)遞質(zhì),是啟動(dòng)和維持睡眠重要的神經(jīng)遞質(zhì),低GABA水平在失眠患者中普遍存在[4。臨床上常用的苯二氮草類受體激動(dòng)劑可通過(guò)增加GABA神經(jīng)元的活性來(lái)有效治療失眠[4。Winkelman 團(tuán)隊(duì)[4首次使用1H-MRS證明,PI患者的全腦GABA水平比健康對(duì)照組低 30% ,并且GABA水平與睡眠后覺(jué)醒呈負(fù)相關(guān)。隨后,該小組進(jìn)一步發(fā)現(xiàn)PI患者枕葉和背側(cè)前扣帶回的GABA分別減少了 33% 和
。Glu是中樞神經(jīng)系統(tǒng)中含量最多的興奮性神經(jīng)遞質(zhì),ID患者外周血中血清Glu濃度升高[48]。Spiegelhalder等[49]發(fā)現(xiàn),背外側(cè)前額葉皮層中的
( Glu 與谷氨酰胺的聯(lián)合濃度)存在明顯的“組別 × 測(cè)量時(shí)間”交互效應(yīng),PI患者的Glx水平在一天中不斷增加,而健康對(duì)照組則沒(méi)有該表現(xiàn),失眠患者的
的日變化可能反映了一天中過(guò)度覺(jué)醒的程度。GABA和Glu神經(jīng)元的最大放電與睡眠一覺(jué)醒狀態(tài)有關(guān),ID患者大腦中GABA與Glu比例增加表明興奮性一抑制性失衡,進(jìn)而導(dǎo)致睡眠誘導(dǎo)活動(dòng)不足及過(guò)度覺(jué)醒[50]
5 小結(jié)與展望
綜上所述,本文通過(guò)EEG、SPECT、PET、fMRI、MRS技術(shù)揭示了ID患者在大腦功能和代謝上過(guò)度覺(jué)醒的證據(jù),這些異常的區(qū)域主要分布于覺(jué)醒、情緒調(diào)節(jié)和認(rèn)知控制的腦區(qū),如丘腦、藍(lán)斑、前扣帶回、島葉、杏仁核。這些發(fā)現(xiàn)不僅為ID的HT提供了豐富的依據(jù),也有助于解釋失眠患者的臨床癥狀。未來(lái)的研究需要進(jìn)一步關(guān)注不同ID亞型的神經(jīng)影像學(xué)縱向變化,為ID的早期診斷、病情監(jiān)測(cè)及預(yù)后評(píng)估等方面提供支持。
參考文獻(xiàn)
[1] DRESSLE R J, RIEMANN D.Hyperarousal in insomnia disorder: Current evidence and potential mechanisms[J/OL].Journal of Sleep Research,2023,32(6):e13928(2023-05-14)[2024-12- 12].https://pubmed.ncbi.nlm.nih.gov/37183177/.DOI: 10.1111/ jsr.13928.
[2] DOPHEIDE J A.Insomnia overview: epidemiology, pathophysiology, diagnosis and monitoring, and nonpharmacologic therapy[J].The American Journal of Managed Care, 2020, 26 (4Suppl) : S76-S84.
[3] DRESSLE RJ,RIEMANN D, SPIEGELHALDER K, et al.On the relationship between EEG spectral analysis and pre-sleep cognitive arousal in insomnia disorder: towards an integrated model of cognitive and cortical arousal[J/OL].Journal of Sleep Research, 2023,32(4):e13861(2023-02-23)[2024-12-12].https:// pubmed.ncbi.nlm.nih.gov/36815625/.DO1: 10.111/jsr.13861.
[4] KAY D, BUYSSE D.Hyperarousal and beyond: new insights to the pathophysiology of insomnia disorder through functional neuroimaging studies[J].Brain Sciences, 2017, 7(3):23.
[5] JANG G, JUNG H W,KIM J,et al.Hyperarousal-state of insomnia disorder in wake-resting state quantitative electroencephalography[J].Clinical Psychopharmacology and Neuroscience: the Official Scientific Journal of the Korean College of Neuropsychopharmacology,2024,22(1): 95-104.
[6] SHI Y,REN R, LEI F, et al.Elevated beta activity in the nighttime sleep and multiple sleep latency electroencephalograms of chronic insomnia patients[J].Frontiers in Neuroscience, 2022, 16(1):1045934.
[7] KWEON W, LEE K H, CHOIS H, et al.Amygdala resting-state functional connectivity alterations in patients with chronic insomnia disorder: correlation with electroencephalography beta power during sleep[J].Sleep,2023,46(10): zsad205.
[8] ZHAO W,VAN SOMEREN E J W, LIC, et al.EEG spectral analysis in insomnia disorder: a systematic review and metaanalysis[J].Sleep Medicine Reviews,2021,59(5):101457.
[9] NARDO D,HOGBERG G, JONSSON C, et al.Neurobiology of sleep disturbances in PTSD patients and traumatized controls: MRI and SPECT findings[J].Frontiers in Psychiatry, 2015, 6 (1):134.
[10] NOFZINGER E A, BUYSSE D J,GERMAIN A,et al. Functional neuroimaging evidence for hyperarousal in insomnia[J]. AmJPsychiatry,2004,161(11): 2126-2128.
[11] NOFZINGER E A, BUYSSE D J.Regional cerebral metabolic correlates of WASO during NREM sleep in insomnia[J].Journal of Clinical Sleep Medicine,2006,2(3):316-322.
[12] KAY D B, KARIM HT, SOEHNER A M, et al.Sleep-wake differences in relative regional cerebral metabolic rate for glucose among patients with insomnia compared with good sleepers[J]. Sleep,2016,39(10):1779-1794.
[13] KAY D B, KARIM H T, SOEHNER A M, et al.Subjectiveobjective sleep discrepancy is associated with alterations in regional glucose metabolism in patients with insomnia and good sleeper controls[J].Sleep,2017, 40(11): zxs155.
[14] AQUINO G, BENZ F, DRESSLE R J, et al.Towards the neurobiology of insomnia: A systematic review of neuroimaging studies[JlSleep Medicine Reviews,2024,73(1):101878.
[15] WU Y, ZHUANG Y, QI J.Explore structural and functional brain changes in insomnia disorder: a PRISMA-compliant whole brain ALE meta-analysis for multimodal MRI[J/OL].Medicine, 2020,99(14):e19151(2020-01-12)[2024-09-25]. https://pubmed.ncbi.nlm.nih.gov/32243357/.DO1: 10.1097/ MD.0000000000019151.
[16] FENG Y, FU S S, LI C, et al.Interaction of gut microbiota and brain function in patients with chronic insomnia: a regional homogeneity study[J].Frontiers in Neuroscience, 2022, 15(1): 804843.
[17] LI J W, LI S M, ZENG S Q, et al.Static and temporal dynamic alterations of local functional connectivity in chronic insomnia[J]. Brain Imaging and Behavior,2024,18(6):1385-1393.
[18] DAI X J,NIE X, LIU X, et al.Gender differences in regional brain activity in patients with chronic primary insomnia: evidence from a resting-state fMRI Study[J]Journal of Clinical Sleep Medicine,2020,12(3):363-374.
[19] YANG N, YUAN S Y, LI C L, et al.Diagnostic identification of chronic insomnia using ALFF and FC features of resting-state functional MRI and logistic regresson approach[J].Scientific Reports,2023,13(1):406.
[20] JIANG T F, YIN X J, ZHU L Y, et al.Abnormal alterations of regional spontaneous neuronal activity and functional connectivity in insomnia patients with difficulty falling asleep:a resting-state fMRI study[J]BMC Neurology,2023,23(1):430.
[21] ZHANG H Y, JIE P P, LIU Y C, et al.The abnormalities of brain function in females with primary insomnia: a restingstate functional magnetic resonance imaging study[J].Frontiers in Neuroscience,2024,18(1):1414154.
[22] BAGLIONI C, SPIEGELHALDER K, REGEN W,et al. Insomnia disorder is associated with increased amygdala reactivity to insomnia-related stimuli[J].Sleep,2014, 37(12): 1907- 1917.
[23] KIM Y B, KIM N, LEE JJ, et al.Brain reactivity using fMRI to insomnia stimuli in insomnia patients with discrepancy between subjective and objective sleep[J].Scientific Reports, 2021,11 (1):1592.
[24] WASSING R, SCHALKWIJK F, LAKBILA-KAMAL O, et al. Haunted by the past: old emotions remain salient in insomnia disorder[J].Brain: A Journal of Neurology, 2019,142(6): 1783-1796.
[25] SANZ-ARIGITA E, DAVIAUX Y, JOLIOT M, et al.Brain reactivity to humorous films is affected by insomnia[J].Sleep, 2021,44(9):zsab081.
[26] SCHIMMELPFENNIG J, TOPCZEWSKI J, ZAJKOWSKI W, et al.The role of the salience network in cognitive and affective deficits[J].Frontiers in Human Neuroscience, 2023,17(1): 1133367.
[27] SCHIEL J E, HOLUB F, PETRI R, et al.Affect and arousal in insomnia:through a lens of neuroimaging studies[J].Current Psychiatry Reports,2020, 22(9):44.
[28] ZHAO G L, YU L Y, CHEN P X, et al.Neural mechanisms of attentional bias to emotional faces in patients with chronic insomnia disorder[J]Journal of Psychiatric Research,2024169 (1): 49-57.
[29] LI Y Z, ZOU G Y, SHAO Y, et al.Sleep discrepancy is associated with alterations in the salience network in patients with insomnia disorder: an EEG-fMRI study[J].Neuroimage Clin, 2022,35(3):103111.
[30] FERMIN A S R, FRISTON K, YAMAWAKI S.An insula hierarchical network architecture for active interoceptive inference[J].Royal Society Open Science,2022,9(6): 220226.
[31] CHENG Y X, XUE T, DONG F, et al.Abnormal functional connectivity of thesalience network in insomniaJ]Brain Imaging and Behavior,2022,16(2):930-938.
[32] GUO Y P, ZOU G Y, SHAO Y, et al.Increased connectivity of theanteriorcingulatecortexis assciatedwiththetendency to awakening during N2 sleep in patients with insomnia disorder[]. Sleep,2023,46(3): zsac290.
[33] WEI Y, LEERSSEN J, WASSING R, et al.Reduced dynamic functional connectivity between salience and executive brain networks in insomnia disorder[J/OL].Journal of Sleep Research, 2020,29(2): e12953(2019-12-03)[2024-12-12].https:// pubmed.ncbi.nlm.nih.gov/32164035/.DO1: 10.1111/jsr.12953.
[34] LI C, DONG M S, YIN Y, et al.Abnormal whole-brain functional connectivity in patients with primary insomnia[J]. Neuropsychiatric Disease and Treatment, 2017, 13(1): 427- 435.
[35] SHAO Z Q, XU Y, CHEN L M, et al.Dysfunction of the NAcmPFC circuit in insomnia disorder[J].Neurolmage: Clinical, 2020,28(4):102474.
[36] LEERSSEN J, WASSING R, RAMAUTAR J R, et al. Increased hippocampal-prefrontal functional connectivity in insomnia[J].Neurobiology of Learning and Memory, 2019, 160 (4):144-150.
[37] MA X F, JIANG G H, TIAN J Z, et al.Convergent and divergent functional connectivityalterations of hippocampal subregions between short-term and chronic insomnia disorder[J]. Brain Imaging and Behavior,2021,15(2):986-995.
[381 GONG I.. HE K W. CHENG F. et al The rmole of ascendino arousal network in patients with chronic insomnia disorder[J]. Human Brain Mapping,2023,44(2): 484-495.
[39] LI C L, LIU Y X,YANG N,et al.Functional connectivity disturbances of the locus coeruleus in chronic insomnia disorder[].Nature and Science of Sleep, 2022,14(1):1341- 1350.
[40] GONG L, SHI M, WANG J, et al.The abnormal functional connectivity in the locus coeruleus-norepinephrine system associated with anxiety symptom in chronic insomnia disorder[J]. Frontiers in Neuroscience,2021,15(1):678465.
[41] MA X F,F(xiàn)U S S, XU G, et al.Reduced left lateralized functional connectivity ofthethalamic subregions between shortterm and chronic insomnia disorder[J].Sleep and Biological Rhythms,2022,20(2):229-237.
[42] ZOU G Y,LI Y Z,LIU J Y,et al.Altered thalamic connectivity in insomnia disorder during wakefulness and sleep[J].Human Brain Mapping,2021,42(1):259-270.
[43] HUANG G,F(xiàn)ANG Y Y,ZHANG W W,et al.Altered thalamic functional connectivity and cerebral blood flow in insomnia disorder: a resting-state functional magnetic resonance imaging study[J].Clinical Imaging,2022,88(8): 17-23.
[44] PERRIER J, BRUIJEL J, NAVEAU M, et al.Functional connectivity correlates of attentional networks in insomnia disorder: a pilot study[J/OL].Journal of Sleep Research, 2023, 32(3):e13796(2022-11-27)[2024-10-12].https://pubmed. ncbi.nlm.nih.gov/36436510/.DO1: 10.1111/jsr.13796.
[45] FASIELLO E, GORGONI M, SCARPELLI S, et al.Functional connectivity changes in insomnia disorder: a systematic review[J]. Sleep Medicine Reviews,2022,61(1):101569.
[46] WINKELMAN J W, BUXTON O M, JENSEN JE, et al. Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS)[J].Sleep, 2008,31(11):1499-1506.
[47] PLANTE D T, JENSEN J E, SCHOERNING L, et al.Reduced γ -aminobutyric acid in occipital and anterior cingulate cortices in primary insomnia: a link to major depressive disorder?[J]. Neuropsychopharmacology,2012,37(6):1548-1557.
[48] LIN J J,HOU X H,LIU Y X,et al.Elevated peripheral glutamate and upregulated expression of NMDA receptor NR1 subunit in insomnia disorder[J].Frontiers in Psychiatry, 2024, 15(1):1436024.
[49] SPIEGELHALDER K, REGEN W, NISSEN C, et al.Magnetic resonance spectroscopy in patients with insomnia: a repeated measurement study[J/OL].PLoS One, 2016,11 (6) : e0156771 (2016-06-10) [2024-10-12].https://pubmed.ncbi.nlm.nih. gov/27285311/.DO1: 10.1371/journal.pone.0156771.
[50] RIEMANN D, NISSEN C, PALAGINI L, et al.The neurobiology, investigation, and treatment of chronic insomnia[J]. The Lancet Neurology,2015,14(5):547-558.
(收稿日期:2024-12-13)(本文編輯:占匯娟)