999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

轉錄組和代謝組聯合分析植物呈色機制研究進展

2025-08-18 00:00:00郭聰金雨晴王瑩柯裴蓓陳燕吳玲黃欣徐秋霞谷青青曹凡李玉娟
江蘇農業科學 2025年10期
關鍵詞:類黃酮代謝物調控

中圖分類號:S184 文獻標志碼:A 文章編號:1002-1302(2025)10-0001-12

植物在生長發育過程中,常常伴隨著各種組織器官的顏色變化,對環境、植物本身或者人類生活都具有重要的價值。比如,彩葉植物具有高觀賞性;花色能夠吸引昆蟲傳粉、躲避天敵;彩色果實內的色素能夠提供較高的營養和較好的風味等。因此,植物呈色機制的研究愈發必要。隨著現代分子生物學和生物信息學的迅猛發展,轉錄組和代謝組技術的出現為植物呈色機制的研究提供了新支撐

轉錄組技術可以檢測植物呈色狀態下特定組織轉錄水平的整體差異,揭示不同顏色下的差異表達基因。代謝組是基因和表型之間的橋梁,是基因-轉錄-翻譯的最終產物。隨著生物學研究的不斷深入,單一的轉錄組或代謝組研究已不能較完整地闡述植物呈色機制。因此,轉錄組和代謝組聯合分析成為一種突破單一組學研究瓶頸的有效方法。轉錄組和代謝組聯合分析可以反映植物呈色狀態下基因轉錄到代謝的情況,實現差異基因與差異代謝物共表達分析,探究基因與代謝物的關系,篩選出重要通路、關鍵基因和關鍵代謝物,系統地解析植物呈色的調控過程。迄今為止,轉錄組和代謝組技術已應用于許多植物組織器官的呈色研究中,從深層次挖掘了關鍵基因和關鍵代謝物,探索了各分子之間的調控及因果關系,解析了基因功能和互作網絡。在此背景下,本文綜述了轉錄組和代謝組技術在植物葉、花、果實等組織器官呈色方面的研究進展,分析了突變和外界因素對植物呈色的影響,整合了當前研究存在的問題并進行了展望,為深入探析植物呈色機制、培育彩色新品種提供了參考。

1基于雙組學植物不同組織器官呈色機制研究

花、葉、果實、根、種子等植物組織器官的顏色形成是一個極其復雜的過程。在顏色形成過程中,植物需要大量基因和代謝物發揮功能,因此,闡述植物呈色調控機制是一個巨大的挑戰。目前,轉錄組和代謝組聯合分析已經在探索植物不同組織器官呈色中得到了廣泛應用,具體如表1所示。

1.1花色

花色是植物重要的觀賞性狀和品種分類標準,不僅提高了花的觀賞價值、應用價值和經濟價值,而且是植物向傳粉者傳遞信號的重要功能性狀,在植物繁殖中起著重要作用。

綜合近幾年轉錄組和代謝組聯合分析在花色調控機制中的應用研究,發現調控花色的色素主要是類黃酮/花青素和類胡蘿卜素,其中類黃酮/花青素是最常見、研究最廣的色素。研究對其關鍵/主要通路、調節基因(包括結構基因、轉錄因子等)進行了挖掘和分析。例如,F3GT1通過調節LAR和ANR來影響鹿角杜鵑花瓣花青素的合成和積累,調控紫色花瓣形成[1];bHLH63轉錄因子可能調控PmCCD4 ,從而影響梅花花瓣中葉黃素的積累,是梅花花瓣呈現黃色的關鍵2;玫瑰花瓣中MYB(RC7G0019000)和WRKY(RC1G0363600)可能結合了F3'H(RC7G0058400)DFR(RC6G0470600)或ANS(RC7G0212200)的啟動子,WRKY(RC1G0363600)也可能與MYB(RC7G0019000)的啟動子結合,激活玫瑰花斑點區域矢車菊素等花青素的積累,促使玫瑰花瓣從玫紅色到深紅色斑點的形成[3]

器 ¥

1.2 葉色

葉色是植物重要的表型特征,在觀賞性、食用性以及品種分辨等方面具有重要作用。綜合轉錄組和代謝組技術在植物葉片呈色機制中的研究顯示,類黃酮/花青素、類胡蘿卜素等是影響植物葉片呈色的主要色素,其中類黃酮/花青素色素研究范圍最廣。目前,部分植物葉色的分子調控機制通過雙組學技術被闡述。例如,SOCI(MADS-box)、CPC(MYB) 和bHLHI62(bHLH)轉錄因子可能直接或間接調控DFR、ANS和UFGTI等結構基因來影響香椿花青素的合成和積累,間接控制香椿紅葉表型[4]; F3H 參與了矢車菊素-3-0-葡萄糖苷的形成且相關性較高,bHLHI和bHLH2轉錄因子與F3H 表達模式相似,并在閩楠紅葉過表達試驗中被驗證促進花青素的合成[5;美洲黑楊紫葉形成過程中,屬于SG5亞家族的R2R3-MYB轉錄因子Podel.04G021100與 及UFGT等結構基因有相似的表達模型,且與花青素化合物含量顯著相關,表明Podel.04G021100調節花青素的合成和積累[6]

1.3果色

果色是植物重要的品質性狀之一,賦予顏色的色素關系到果實的營養、健康和風味。因此,果色一直是育種者和消費者非常重視的表型。果實之所以能呈現出鮮艷的顏色,是因為有許多與果色相關色素的存在。

綜合近幾年轉錄組和代謝組技術在植物果實呈色上的應用報道,發現類黃酮/花青素、類胡蘿卜素以及甜菜素等色素對果色具有關鍵作用,其中類黃酮/花青素研究范圍最廣,且在大部分果實呈色中起主導作用。目前,通過雙組學挖掘了一批關鍵/主要的調節因子,分析了相關的分子調節機制。比如,矢車菊素-3-0-半乳糖苷是軟棗弼猴果實呈現紅色的關鍵因子,結構基因(AaPAL3、Aa4CL3、AaCHS2/3/8/9/11、AaDFR1/2、AaANR1、UFGT3a、UFGT6b)和轉錄因子(MYB108、bHLH30、bHLH94-1、WD43)調節矢車菊素-3-0-半乳糖苷的合成和積累[7];CMB1-1、WRKY22-1、WRKY22-3和RAP2-I3-like 轉錄因子通過調節PSYI和ZDSI等結構基因,調控類胡蘿卜素化合物的合成,影響枸杞果實呈色效果[8]。火龍果紅色和黃色果皮的形成主要依賴于甜菜素生物合成通路,WRKY轉錄因子激活CYP76ADs的表達[9。

1.4其他組織器官

除了葉、花、果外,部分植物的根、莖、種子等組織器官也通過轉錄組和代謝組聯合分析了呈色研究。 CHS,CHI,DFR,FLS,F3H,F35H,LAR,ANS, ANR等57個基因和柚皮苷查爾酮、柚皮素等代謝物在參薯塊莖呈色中扮演重要角色[10];紫竹莖呈現紫黑色是由于矮牽牛素-3-0-葡萄糖苷和錦葵色素-O-己糖苷的差異積累,其中PnMYB6、PnMYB1PnbHLHs、PnAnl1以及PnSPL9等轉錄因子調控 PnF3Hs,PnF35Hs,PnANS2,PnUFGTs PnCHI2 以及 PnCHSI 等結構基因的表達,影響花青素的合成和積累[\"];綠豆呈黑色是由于其富含花青素,VrMYB90是重要的調節因子[12] C

通過轉錄組和代謝組聯合分析對植物花、葉、果等組織器官進行呈色機制分析,發現類黃酮/花青素色素在植物呈色過程中是最常見且最主要的色素。其中,葉片呈色的主要色素與前人的研究結果[13]一致。然而,影響花瓣呈色的色素與前人研究的不太相符(有研究表明,植物花瓣呈色色素包括類黃酮類/花青素、類胡蘿卜素類以及甜菜素[14]),缺少花瓣呈色研究中甜菜素的影響,可能是相關研究或者論文并沒有報道。

2基于雙組學植物不同組織器官顏色突變研究

自然界中,大量植物的花、葉、果實等組織器官顏色發生了變異。在我們日常生活中,一些蔬菜、水果、觀賞植物、中藥材等植物品種往往來源于顏色變異。近年來,隨著轉錄組和代謝組技術的不斷發展,這些常見的顏色變異的品種的呈色機制也被進行了雙組學研究,具體如表2所示。

綜合近幾年轉錄組和代謝組聯合分析在植物不同組織器官顏色突變呈色機制中的相關報道,得出顏色突變主要還是由葉綠素、類胡蘿卜素以及類黃酮/花青素3類色素的差異積累所導致的,其中一些結構基因、轉錄因子等調節因子被挖掘出來。例如,MYB21、UGT88F3、GSTF12和VPS32.3等基因與矢車菊素-3-0-葡萄糖苷的合成和積累密切相關,共同調節陸地棉突變體花瓣呈現粉紅色和底部深紅色的斑點[63]; MaMYBII3a/b 基因在葡萄風信子花色突變體花瓣白色區域低表達,紫色區域高表達,促進了花青素的積累[64];葉綠素b還原酶基因NYCI的上調表達和4個Lhcb基因的下調表達加速了哈密瓜突變體黃綠色葉片中葉綠素b的降解,抑制了LhcB2蛋白的表達,使其突變體在整個生育期均表現為黃綠葉表型[65];MdMYB66能夠特異性激活MdF3H,調節花青素的合成和積累,使蘋果芽突變體幼果果皮呈現深紅色[];BhiPRR6與多個基因相互作用,調控光信號的吸收,從而改變冬瓜果皮的顏色和類黃酮化合物的合成[67]

通過轉錄組和代謝組聯合分析技術,闡述了植物組織器官顏色突變機制,篩選出了關鍵/主要代謝通路、代謝物以及基因,為后續植物呈色研究和突變物種的篩選提供了新的基因資源。

3基于雙組學外界因素對植物呈色影響機理的研究

植物花、葉、果實等組織器官受到外界因素的干擾,會呈現出不同的顏色,并通過轉錄組和代謝組進行調控機理分析,具體如表3所示。

不同地域環境的差異會影響植物花色。例如,種植于青海省共和地區和西寧地區的甘青鐵線蓮花瓣呈現不同的顏色。通過雙組學分析可知,類黃酮類化合物是花色主要調節色素,BZ1-1和FG3-1 是花青素生物合成中飛燕草素-3-0-蕓香糖苷的關鍵基因,HCT-5和FG3-3是類黃酮生物合成中野漆樹苷和柚皮苷以及黃酮和黃酮醇的關鍵基因,類黃酮生物合成中綠原酸的關鍵基因包括HCT-6、CHS-1 和 IF7MAT-1[84]

葉色研究顯示,光、轉基因手段、環剝手段以及溫度等影響植物葉色的改變。高強度光照下辣椒葉片變黃是由于 bHLH7I-like,CaVDE 和LUT5的表達增加,ZEP的表達降低,進一步促進了花青素和玉米黃質的生物合成和積累,進而導致葉片變黃[85];對紅楓枝條進行環狀剝皮處理,導致該部位以上葉片呈現紅色,其中Pkinase(c108619.graph_ )、UDPGT(c117950.graph_ )、Metallophos(cl15191. graph )、Ampbinding(c109312. graph_cO )、UDP-GT(C122287.c)通過調節苯丙素生物合成、花青素生物合成和黃酮類生物合成來調節紅楓葉片的顏色[8];AmRoseal基因在84K楊樹中過表達,直接調控BZ1 ,ANS 和DFR等基因,增加了葉片中花青素相關代謝物的含量,使84K楊樹葉片由綠變紅[87];低溫馴化可以間接促進白菜Y-05葉片內部 BrFLU 的表達,阻斷 α- 亞麻酸(ALA)的合成,導致葉綠素含量降低,葉片變黃[88]

果實顏色受光、激素、輻射、嫁接、病菌侵染等外界因素影響。辣椒 48h 光處理后,其CHS2、D F R \ 、 F 3 ^等結構基因和MYB4-like、MYB113-like、MYB308-like、EGL1等轉錄因子調節飛燕草素等花青素的合成,使果實呈現淺紫色[9];葡萄葉面施用三碳酸鈾酰胺(AUT)能夠使trpB轉錄因子上調,并促進葬草酸途徑中生物堿的生物合成,提高了代謝物L-苯丙氨酸的積累,增強了 CHI,PAL,DFR 等基因的活性,改變了果實顏色,縮短了著色期[90];克瑞森無核葡萄異種嫁接促進花青素生物合成通路中上游(PAL)到下游(UFGT、ANS)相關基因的表達,增加花青素含量,使果色較早形成[9];中波紫外線(UV-B)誘導青蘋果呈現紅色可能是通過調控UV-B響應信號[包括UVR8(MD12G1149100)和MBW復合體成員」,調控花青素生物合成基因的表達[92];HLB侵染使砂糖橘果皮持綠,可能涉及苯丙素衍生代謝途徑和光合相關基因下調[93] 。

綜上,外界因素對植物花、葉、果實等組織器官呈色影響明顯,能夠影響植物色素合成途徑相關基因的表達,進而影響色素的合成和積累。

4展望

轉錄組和代謝組聯合分析可以提高關鍵基因和關鍵代謝物篩選的準確性,更能全面地解析植物組織器官呈色調控機制。近年來,轉錄組和代謝組技術的快速發展,推動了植物呈色方面的研究進展,系統全面地解析了植物從轉錄到代謝的呈色機制,為植物呈色機制的深入研究和彩色新品種的培育提供了資料基礎。

目前,植物轉錄組和代謝組分析植物呈色機制的研究成果還不夠完善:許多植物全基因組測序尚未完成或不夠完善,缺少參考基因組,導致需要借助生物信息學進行基因功能注釋;代謝物結構類型的多樣性和未知代謝物鑒定的復雜性導致多種代謝物的種類未能被鑒別;一些植物生長周期長等特點導致了很多基因的功能尚不明確。因此,植物呈色調控網絡上還有許多空白位點,仍需要更多的差異代謝物和差異基因來填補。基于上述問題,將來的試驗設計可以為:進行更多的植物全基因組測序,進一步拓展生物信息數據庫;將不同組學技術整合應用,更精準、更深入地揭示植物呈色調控網絡;探索類黃酮、類胡蘿卜素、甜菜素以外的色素代謝研究,豐富代謝數據信息。

參考文獻:

[1]Xiao P,Zhang H,Liao QL,et al.Insightinto the molecular mechanism of flowercolorregulationin Rhododendron latoucheae Franch:a multi-omics approach[J]. Plants,2023,12(16) :2897.

[2]DingAQ,BaoF,YuanX,etal.Integrativeanalysisofmetabolome andtranscriptomerevealed luteinmetabolismcontributedtoyellow flowerformationinPrunusmume[J].Plants,2023,12(18) :3333.

[3]JiNZ,Wang QY,Li SS,etal.Metabolic profile and transcriptome revealthemysteryof petalblotch formationinrose[J].BMCPlant Biology,2023,23(1) :46.

[4]XuJ,FanYR,HanXJ,etal.Integrated transcriptomic and metabolomicanalysisrevealtheunderlyingmechanismof anthocyaninbiosynthesisin Toonasinensisleaves[J].International Journal ofMolecularSciences,2023,24(20):15459.

[5]Wang L,Wang Q G,Fu N N,et al. Cyanidin -3- O - glucoside contributes to leaf colorchangebyregulatingtwobHLH transcription factorsin Phoebebournei[J].International Journal ofMolecular Sciences,2023,24(4) :3829.

[6]Peng XQ,Ai Y J,Pu Y T,et al. Transcriptome and metabolome analysesreveal molecularmechanismsofanthocyanin-relatedleaf colorvariationinpoplar(Populusdeltoides)cultivars[J].Frontiers in Plant Science,2023,14:1103468.

[7]Ye L X,Bai F X,Zhang L,et al. Transcriptome and metabolome analyses of anthocyanin biosynthesis inpost-harvest fruitsofafull red-type kiwifruit(Actinidia arguta)‘Jinhongguan’[J]. FrontiersinPlant Science,2023,14:1280970.

[8]WeiF,WanR,Shi ZG,etal.Transcriptomicsand metabolomics reveal the critical genes of carotenoid biosynthesis and color formationof goji(LyciumbarbarumL.)fruit ripening[J].Plants, 2023,12(15) :2791.

[9]ZhouZX,Gao HM,MingJH,etal.Combined transcriptome and metabolome analysis of pitaya fruit unveiled the mechanisms underlying peel and pulp color formation[J].BMC Genomics, 2020,21(1) :734.

[10]Wang Y,LuRS,Li MH,et al.Unraveling the molecular basis of colorvariation in Dioscorea alata tubers:integrated transcriptome and metabolomics analysis[J].International Journal of Molecular Sciences,2024,25(4) :2057.

[11] Cai O, Zhang H J,Yang L,et al. Integrated transcriptome and metabolomeanalysesrevealbambooculmcolorformation mechanismsinvolved inanthocyaninbiosyntheticinPhyllostachys nigra[J].International Journal of Molecular Sciences,2024,25 (3) :1738.

[12]Ma C,FengY L,Zhou S,et al. Metabolomics and transcriptomics provide insights into the molecular mechanisms of anthocyanin accumulation in the seed coat of differently colored mung bean (Vigna radiata L.)[J]. Plant Physiology and Biochemistry,2023, 200:107739.

[13]陳璇,謝軍,岳遠征,等.彩葉植物葉片呈色分子機制研究 進展[J].西北植物學報,2020,40(2):358-364.

[14]張和臣,袁欣,高杰,等.植物花瓣呈色機理及花色分子育 種[J].生物技術通報,2023,39(5):23-31.

[15]Wang D,Liu G L,Yang J,et al.Integrated metabolomics and transcriptomics reveal molecular mechanisms of corolla coloration in Rhododendron dauricumL.[J].Plant Physiologyand Biochemistry,2024,207:108438.

[16]Huang L,Lin B G,Hao P F,et al. Multi -omics analysis reveals thatanthocyanin degradation and phytohormone changes regulate red color fading in rapeseed(Brassica napus L.)petals[J]. International Journal of Molecular Sciences,2024,25(5) :2577.

[17] Huang X Z,Liu L,Qiang XJ,et al.Integrated metabolomic and transcriptomic profiles provide insights into the mechanisms of anthocyanin and carotenoid biosynthesis in petals of Medicago sativa ssp. sativa and Medicago sativa ssp. falcata[J]. Plants,2024,13 (5) :700.

[18] Zeng H T,Zheng T,Tang Q,et al. Integrative metabolome and transcriptome analyses reveal the coloration mechanism in Camellia oleiferapetals with different color[J].BMC Plant Biology,2024,24 (1) :19.

[19]Jiang W H,Jiang QQ,Shui ZJ,et al.HaMYBA - HabHLH1 regulatory complex and HaMYBF fine-tune red flower coloration in the corolla of sunflower(Helianthusannuus L.)[J].Plant Science,2024,338:111901.

[20]Qu Y,Ou Z,Yong QQ,etal.Coloration differences in three Camellia reticulata Lindl.cultivars:‘ Tongzimian’,‘ Shizitou’and ‘Damanao'[J].BMC Plant Biology,2024,24(1):18.

[21]Hu X M,Sun TX,Liang Z H,et al.Transcription factors TgbHLH42-1 and TgbHLH42-2 positively regulate anthocyanin biosynthesis in tulip(Tulipa gesneriana L.)[J].Physiologia Plantarum,2023,175(3):e13939.

[22]DengXY,Hu C,Xie C Z,etal.Metabolomic and transcriptomic analysis reveal the role of metabolitesand genes in modulating flower color of Paphiopedilum micranthum[J].Plants,2023,12(10):2058.

[23]Ma L L,Zhang Y P,Cui G F,et al. Transcriptome analysis of key genes involved in color variation between blue and white flowers of iris bulleyana[J].BioMed Research International,2023,2023(1): 7407772.

[24]Shu W B,Shi M R,ZhangQ Q,et al. Transcriptomic and metabolomic analyses reveal differences in flavonoid pathway gene expression profiles between two Dendrobium varieties during vernalization[J].International Journal ofMolecularSciences, 2023,24(13) :11039.

[25]Qiu YJ,Cai C C,Mo X,et al. Transcriptome and metabolome analysis reveals the effect of flavonoids on flower color variation in Dendrobium nobile Lindl[J].Frontiers in Plant Science,2023, 14:1220507.

[26]LiYL,Sun Z S,Lu JY,et al.Integrated transcriptomics and metabolomics analysis provide insight into anthocyanin biosynthesis for sepal color formation in Heptacodium miconioides[J]. Frontiers inPlant Science,2023,14:1044581.

[27]ZhuZS,ZengXM,ShiXQ,etal.Transcriptionand metabolic profiling analysisof three discolorationsinaday of Hibiscus mutabilis[J].Biology,2023,12(8) :1115.

[28]Wu D,ZhuangFC,WangJR,et al.Metabolomicsand transcriptomics revealed a comprehensive understanding of the biochemical and genetic mechanisms underlying the color variations in Chrysanthemums[J]. Metabolites,2023,13(6):742.

[29]Zhou NZ,Yan YJ,Wen Y F,et al. Integrated transcriptome and metabolome analysis unveils the mechanism of color - transition in Edgeworthia chrysantha tepals[J]. BMC Plant Biology,2023,23 (1) :567.

[30]Sun Y,Hu PL,JiangYN,et al.Integrated metabolome and transcriptome analysisof petal anthocyaninaccumulationmechanism inGloriosasuperba‘Rothschildiana’during different flower development stages[J].International Journal of Molecular Sciences, 2023,24(20):15034.

[31]Zhao T,Yu Q X,Lin C J,et al.Analyzing morphology, metabolomics,and transcriptomics offrs invaluable insights into the mechanisms of pigment accumulation in the diverse- colored labellum tissuesofAlpinia[J].Plants,2023,12(21):3766.

[32]AiY,ZhengQD,Wang MJ,et al.Molecular mechanism of differentflowercolorformationofCymbidiumensifolium[J].Plant Molecular Biology,2023,113(4/5):193-204.

[33]ZhangM,LiYY,WangJL,et al.Integrated transcriptomic and metabolomic analyses revealsanthocyanin biosynthesis in leaf coloration of quinoa (Chenopodium quinoa Willd.)[J].BMC Plant Biology,2024,24(1) :203.

[34]Liu Q,Wang L J,He L N,et al. Metabolome and transcriptome reveal chlorophyll,carotenoid,and anthocyanin jointlyregulate the color formationofTriadicasebifera[J].PhysiologiaPlantarum, 2024,176(2) :e14248.

[35]TianX M,Xiang GF,LvH,etal.Transcriptomicand metabolic analysis unveils the mechanism behind leaf color development in Disanthuscercidifoliusvar. longipes[J].Frontiers in Molecular Biosciences,2024,11:1343123.

[36]Li S S,Yang Y Q,Yu J,et al. Molecular and metabolic insights into purplish leaf coloration through the investigation of two mulberry (Morus alba)genotypes[J].BMC Plant Biology,2024,24(1):

[37] Zhang Y Z,Wang L Y,Kong X R,et al. Integrated analysis of metabolome and transcriptome revealed diferent regulatory networks ofmetabolicfluxin teaplants[Camelliasinensis(L.)O.kuntze]with variedleaf colors[J].International Journalof Molecular Sciences, 2023,25(1) :242.

[38]Wang YL, Zhen JP,Che X Y,et al. Transcriptomic and metabolomic analysis of autumn leaf color change in Fraxinus angustifolia[J].PeerJ,2023,11:e15319.

[39]Luo YY,DengM,Zhang X,etal. Integrative transcriptomic and metabolomic analysis reveals the molecular mechanism of red maple (Acer rubrum L.) leaf coloring[J]. Metabolites,2023,13(4):464.

[40] Zhang X,Zhang L, Zhang D M,et al. Comprehensive analysis of metabolome and transcriptome reveals the mechanism of color formation in different leave of Loropetalum Chinensevar.rubrum [J].BMC Plant Biology,2023,23(1):133.

[41] ZhangSW,YuXR,Chen MJ,etal.Comparative transcriptome and metabolome profiling reveal mechanisms of red leaf color fading in Populus × euramericana cv.‘ Zhonghuahongye’[J].Plants, 2023,12(19) :3511.

[42]Luo X Q,An F F,Xue JJ,et al. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in cassava(Manihot esculenta Crantz) leaves[J].Frontiers in Plant Science,2023,14:1181257.

[43]Huang R S,Su Y T,ShenHY,et al.Integrative transcriptome and metabolome analysisto reveal red leaf coloration in shiya tea (Adinandra nitida)[J].Frontiers inBioscience,2023,28(10): 236.

[44]Mao JP,Gao Z,Wang XL,et al.Combined widely targeted metabolomic,transcriptomic,and spatial metabolomic analysis reveals the potential mechanism of coloration and fruit quality formation in Actinidiachinensis cv.Hongyang[J].Foods,2024,13 (2):233.

[45] Wu X M,Yang M,Liu C H,et al. Transcriptome,plant hormone, and metabolome analysis reveals the mechanism of purple pericarp formation in‘Zihui’papaya(Carica papaya L.)[J].Molecules, 2024,29(7) 1485.

[46]Huang H J,Zhao L, Zhang B,et al. Integrated analysis of the metabolome and transcriptome provides insights into anthocyanin biosynthesis of cashew apple[J]. Food Research International, 2024,175:113711.

[47]Song KH,ZhangXM,Liu JM,et al.Integration of metabolomics and transcriptomics to explore dynamic alterations in fruit color and quality n‘ Comte de Paris’pineapples during ripening processes [J]:International Journal of Molecular Sciences,2023,24 (22) :16384.

[48]Lyu JH,ZhangRH,Mo YR,et al. Integrative metabolome and transcriptome analyses provide insights into carotenoid variation in different -colored peppers[J]. International Journal of Molecular Sciences,2023,24(23):16563.

[49]Li YP.Li HF.Wang S Y.et al.Metabolomic and transcrintomic anaryses Havonoiu Iosynuenc pauway DIueberry (Vaccinium spp.)[J]. Frontiers in Plant Science,2023,14: 1082245.

[50]Huang JF,Qin Y L,Xie Z L,et al. Combined transcriptome and metabolome analysis reveal that the white and yellow mango pulp colorsare associated with carotenoidand flavonoidaccumulation, andphytohormonesignaling[J].Genomics,2023,115(5): 110675.

[51]XiongY,HeJY,LiMZ,etal.ntegrative analysis of metabolome and transcriptome reveals the mechanism of color formation in yellowfleshed kiwifruit[J]. International Journal of Molecular Sciences, 2023,24(2) :1573.

[52]Su W B,Zhu C Q,Fan Z Q,et al. Comprehensive metabolome and transcriptome analysesdemonstrate divergent anthocyaninand carotenoid accumulationin fruits ofwild and cultivated loquats[J]. Frontiers in Plant Science,2023,14:1285456.

[53]LuRX,Song MY,Wang Z,et al.Independent flavonoid and anthocyaninbiosynthesis inthe flesh ofared-fleshed table grape revealed by metabolome and transcriptome co-analysis[J].BMC Plant Biology,2023,23(1) :361.

[54]Sun P,Yang C K,Zhu W C,et al. Metabolome,plant hormone,and transcriptome analyses reveal the mechanism of spatial accumulation patern of anthocyanins in peach flesh[J].Foods,2023,12(12): 2297.

[55]Wang Y,Wang ZY,Zhang J,et al.Integrated transcriptome and metabolome analyses provide insights into the coloring mechanism of dark-red andyellow fruits in Chinese cherry[Cerasus pseudocerasus(lindl.)G.Don][J].International Journal of Molecular Sciences,2023,24(4) :3471.

[56]Chu L W,Zheng W,Wang J,et al. Comparative analysis of the difference in flavonoid metabolic pathway during coloring between red-yellow and red sweet cherry(Prunus avium L.))[J].Gene, 2023,880 :147602.

[57]JuYL,WangWN,Yue XF,et al.Integrated metabolomic and transcriptomic analysis reveals the mechanism underlying the accumulation of anthocyanins and other flavonoids in the flesh and skinof teinturier grapes[J].Plant Physiologyand Biochemistry, 2023,197:107667.

[58]Zhang J,Zhang Z X,Wen B Y,et al. Molecular regulatory network ofanthocyaninaccumulationin black radish skin asrevealed by transcriptome and metabonome analysis[J].International Journal of Molecular Sciences,2023,24(17) :13663.

[59]Lyu YP,Zhao G,XieYF,etal.Transcriptome and metabolome profiling unveil pigment formation variations in brown cotton lines (Gossypium hirsutumL.)[J]. International Journal of Molecular Sciences,2023,24(6) :5249.

[60]He MH,Zhang GH,Huo DF,et al.Combined metabolome and transcriptome analysis of creamy yellow and purple colored Panax notoginseng roots[J].Life,2023,13(10):2100.

[61]Yu L,YueJJ,Dai Y X,et al. Characterization of color variation in bamboo sheath of Chimonobambusa hejiangensisby UPLC-ESI - (1) :466.

[62]Xiao JP,Xu X Y,LiM X,etal.Regulatory network characterization of anthocyanin metabolites in purple sweetpotato via joint transcriptomics and metabolomics[J].Frontiers in Plant Science,2023,14:1030236.

[63]Shao D N,Liang Q,Wang XF,et al. Comparative metabolome and transcriptome analysis of anthocyanin biosynthesis in white and pink petals of cotton(Gossypium hirsutum L.)[J].International Journal of Molecular Sciences,2022,23(17) :10137.

[64]Ma JR,Li Z,Liu Y L. Integrating multi -omics analysis reveals the regulatory mechanisms of white - violet mutant flowers in grape hyacinth(Muscari latifolium)[J].International Journalof Molecular Sciences,2023,24(5) :5044.

[65]Han H W,Zhou Y,Liu HF,et al.Transcriptomics and metabolomicsanalysisprovidesinsight into leafcolorand photosynthesis variation of theyellow-green leaf mutant of Hami melon(Cucumis melo L.)[J].Plants,2023,12(8):1623.

[66]HuangYP,LiWF,Jiao SZ,et al.MdMYB66 isassociated with anthocyanin biosynthesis via the activation of the MdF3H promoter in the fruit skin of an apple bud mutant[J]. International Journal of Molecular Sciences,2023,24(23) :16871.

[67]XieLL,Wang J,Liu F,etal.Integrated analysis of multiomics and fine-mapping revealsa candidategene regulating pericarp color and flavonoids accumulation in wax gourd (Benincasa hispida) [J].Frontiers in Plant Science,2022,13:1019787.

[68]GuoFD,GuanRW,SunXR,etal. Integrated metabolome and transcriptome analyses ofanthocyanin biosynthesisrevealkey candidate genes involved in colour variation of Scutellaria baicalensis flowers[J].BMC Plant Biology,2023,23(1):643.

[69]Guan L S,Liu JS,Wang R L,etal.Metabolome and transcriptome analyses reveal flower color differentiation mechanisms in various Sophora japonicaL.petal types[J].Biology,2023,12(12):1466.

[70]Qiao Y,ChengQ M,ZhangY T,et al. Transcriptomic and chemical analyses toidentifycandidate genes involvedin colorvariation of sainfoin flowers[J].BMC Plant Biology,2021,21(1):61.

[71]Lu JJ,ZhangQ,LangL X,et al.Integrated metabolome and transcriptome analysis of the anthocyanin biosynthetic pathway in relation to color mutation in miniature roses[J].BMCPlant Biology,2021,21(1) :257.

[72]Zhang HL,Zhang S Y,Zhang H,et al. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erectaL.)[J]. Scientific Reports,2020,10(1):16835.

[73]Jiao FC,Zhao L,Wu XF,et al.Metabolome and transcriptome analyses of the molecular mechanisms of flower color mutation in tobacco[J].BMC Genomics,2020,21(1):611.

[74]ZhouYW,XuYC,Zhu GF,etal.Pigment diversity inleaves of Caladium×hortulanumbirdsey and transcriptomic and metabolic comparisons between red and white leaves[J]. International Journal of Molecular Sciences,2024,25(1) :605.

[75]YangY,Chen MJ,ZhangW,et al.Metabolome combined with red and green leaves of Populus × euramericana‘Zhonghuahongye' [J].Frontiers in Plant Science,2023,14:1274700.

[76]Zhang Q F,Li C L,Jiao Z X,et al. Integration of metabolomics and transcriptomics reveal the mechanism underlying accumulation of flavonols inalbino tea leaves[J].Molecules,2022,27(18):5792.

[77]MeiX,ZhangKK,LinYE,etal.Metabolicand transcriptomic profiling reveals etiolated mechanism in Huangyu tea(Camellia sinensis)leaves[J].International Journal of Molecular Sciences, 2022,23(23):15044.

[78]QiaoQ,WuC,ChengTT,etal.Comparative analysisofthe metabolome and transcriptome between the green and yellow-green regions of variegated leaves in a mutant variety of the tree species Pteroceltis tatarinowii[J].International Journal ofMolecular Sciences,2022,23(9) :4950.

[79]Zhang HL, Hu A S, Wu H W,et al. Integrated metabolome and transcriptome analysis unveils novel pathway involved in the fruit coloration of Nitraria tangutorum Bobr[J].BMC Plant Biology, 2023,23(1) :65.

[80]JiangLY,YueML,Liu Y Q ,et al.Alterations of phenylpropanoid biosynthesis lead to the natural formation of pinkish- skinned and white-fleshedstrawberry(Fragaria × ananassa)[J]. Intermational Journal of Molecular Sciences,2022,23(13):7375.

[81]Yuan HZ,Cai WJ,Chen X D,et al.Heterozygous frameshift mutation in FaMYBlO isresponsible for thenatural formation of red and white-fleshed strawberry(Fragaria Xananassa Duch.)[J]. FrontiersinPlant Science,2022,13:1027567.

[82]Chen C,Zhou G,Chen J,et al.Integrated metabolome and transcriptome analysis unveils novel pathway involved inthe formation of yellow peel in cucumber[J].International Journal of Molecular Sciences,2021,22(3) :1494.

[83]XuR,LuoM,XuJW,etal. Integrative analysis of metabolomic and transcriptomic data reveals the mechanism of color formation in corms of Pinellia ternata[J]. International Journal ofMolecular Sciences,2023,24(9) :7990.

[84]Guo X Z,Wang G,Li J,etal.Analysis of floral color diferences between different ecological conditionsof Clematistangutica (Maxim.)Korsh[J].Molecules,2023,28(1):462.

[85]Liu ZB,Mao L Z,YangBZ,et al.A multi-omics approach identifies bHLH71- likeasa positive regulatorof yellowing leaf pepper mutants exposed to high - intensity light[J]. Horticulture Research,2023,10(7) :uhad098.

[86]Yan Y Y,Liu Q,Yan K,et al. Transeriptomic and metabolomic analyses reveal how girdling promotes leaf color expression in Acer rubrum L.[J].BMC Plant Biology,2022,22(1):498.

[87]Yan H L, Zhang X X,Li X,et al. Integrated transcriptome and metabolome analyses reveal the anthocyanin biosynthesispathway in AmRoseal overexpression 84K poplar[J].Frontiers in Bioengineering aHu DIUICUUIUgy,zUZz,1U;711/01,

[88]WangH Y,LiZB,Yuan LY,etal.Cold acclimation can specifically inhibit chlorophyll biosynthesisinyoung leavesof Pakchoi[J].BMC Plant Biology,2021,21(1):172.

[89]Zhou Y,Mumtaz M A,ZhangY H,et al. Response of anthocyanin biosynthesis to light by strand-specific transcriptomeand miRNA analysisinCapsicum annuum[J].BMCPlant Biology,2022,22 (1) :79.

[90]ChangDD,Liu HJ,AnMJ,etal.Integrated transcriptomic and metabolomic analysisof themechanism of foliar application of hormone-type growth regulator in the improvement of grape(Vitis viniferaL.) coloration in saline-alkaline soil[J].Plants,202,11 (16):2115.

[91]ZhongH X,Liu ZJ,ZhangFC,etal.Metabolomicand transcriptomic analyses reveal the effects of self-and hetero - grafting on anthocyanin biosynthesisin grapevine[J].Horticulture Research,2022,9:uhac103.

[92]DingRR,Che X K,Shen Z,et al. Metabolome and transcriptome profiling provide insights into green apple peel reveals light-and UV-B- responsive pathway in anthocyanins accumulation[J]. BMC Plant Biology,2021,21(1)351.

[93]Wang FY,Wu YL,Wu W,et al.Integrativeanalysisof metabolome and transcriptome profilesprovides insight into the fruit pericarp pigmentation disorder caused by‘Candidatus Liberibacter asiaticus’infection[J].BMC Plant Biology,2021,21(1)397.

[94]Zhou Y,Wu W S,Sun Y,et al.Integrated transcriptome and metabolome analysis reveals anthocyanin biosynthesis mechanisms in pepper (Capsicum annuum L.) leaves under continuous blue light irradiation[J]. BMC Plant Biology,2024,24(1):210.

[95] Xie G W,Zou X Z,Liang Z S,et al. Integrated metabolomic and transcriptomic analyses reveal molecular response of anthocyanins biosynthesis in Perilla to lightintensity[J].Frontiers in Plant Science,2022,13:976449.

[96]Zheng X,HuangLY,Fan B Y,et al. Integrated transcriptomics and metabolomics analyses of the effects of bagging treatmenton carotenoid biosynthesis and regulation of Areca catechu L.[J]. FrontiersinPlantScience,2024,15:1364945.

[97]YangL,ChenY,WangM,etal.Metabolomicand transcriptomic analyses reveal the effects of grafting on blood orange quality[J]. Frontiers in Plant Science,2023,14:1169220.

[98]Xu X X,Qin HH,Liu CL,etal.Transcriptome and metabolome analysis reveals the effect of nitrogen - potassium on anthocyanin biosynthesis in“Fuji”apple[J]. Journal of Agricultural and Food Chemistry,2022,70(48) :15057 -15068.

[99]Yin HN,WangL,Xi Z M.Involvement of anthocyanin biosynthesis of cabernet sauvignon grape skins in response to field screening and invitro cultureirradiatinginfraredradiation[J].Journalof Agricultural and Food Chemistry,2022,70(40) :12807-12818.

猜你喜歡
類黃酮代謝物調控
建筑企業如何守好“錢袋子”
中國商人(2025年14期)2025-08-19 00:00:00
不同馬鈴薯耐鹽性轉錄組比較及耐鹽基因的挖掘
番茄Slβ-Hex的分子特征及啟動子sgRNA分析
基于UHPLC-QE-MS技術識別穩定型心絞痛 患者血清代謝組學特征
基于非靶向代謝組學的非瓣膜性心房顫動患者血漿代謝特征的初步分析:年齡分層的探索性研究
miR-199a-3p在冠狀動脈粥樣硬化性心臟病中的研究進展
不同品種永泰綠茶的靶向及廣泛靶向代謝組學分析
基于LC-MS技術分析亞硒酸鈉毒害對水稻根系特征及酚酸類、黃酮類化合物積累動態的影響
長鏈非編碼RNAMIATNB對小梁細胞自噬的調控作用及其機制
主站蜘蛛池模板: 亚洲国产欧美国产综合久久| 91精品专区国产盗摄| 国产经典免费播放视频| 无码一区18禁| 国产永久免费视频m3u8| 精品国产免费观看一区| 亚洲av无码人妻| 制服丝袜无码每日更新| 欧美福利在线观看| 99久久精品国产自免费| 无码免费视频| 国产丝袜精品| 在线一级毛片| 亚洲大尺码专区影院| 中日韩一区二区三区中文免费视频| 在线观看国产精品日本不卡网| 人妻21p大胆| 99热国产这里只有精品无卡顿" | 亚洲国产日韩欧美在线| 好吊色妇女免费视频免费| 欧美第一页在线| 欧美日韩国产在线观看一区二区三区 | 色有码无码视频| 黄色网在线| 成人午夜免费观看| 亚洲日本中文字幕天堂网| 久久亚洲黄色视频| 十八禁美女裸体网站| 老司机精品久久| 国产SUV精品一区二区6| 极品国产一区二区三区| 国产亚洲成AⅤ人片在线观看| 波多野结衣无码中文字幕在线观看一区二区 | 亚洲丝袜中文字幕| 极品av一区二区| 在线毛片免费| 国产精品妖精视频| 亚洲无线视频| 成年人福利视频| 国产在线小视频| 黄色片中文字幕| 色综合成人| 91啪在线| 久久熟女AV| 亚洲永久视频| 亚洲中文字幕23页在线| 国产综合另类小说色区色噜噜| 亚洲欧美在线精品一区二区| 青青青国产在线播放| 毛片a级毛片免费观看免下载| 天天摸天天操免费播放小视频| 欧美中文字幕在线播放| 亚洲第一视频免费在线| 福利一区三区| 国产成人高清精品免费| 99热这里只有精品久久免费| 欧美日韩免费在线视频| 欧洲精品视频在线观看| 在线中文字幕日韩| 国产精品永久在线| 91丝袜在线观看| 在线综合亚洲欧美网站| AV色爱天堂网| 素人激情视频福利| 国产精品久线在线观看| 日韩av资源在线| 91免费国产在线观看尤物| 亚洲丝袜第一页| 亚洲欧美色中文字幕| 国模私拍一区二区三区| 国产91丝袜在线播放动漫 | 99久久精品免费观看国产| 亚洲欧洲日本在线| 日韩a级片视频| 国产精品丝袜在线| 亚洲精品视频在线观看视频| 91精品视频在线播放| 国产一级无码不卡视频| 国产粉嫩粉嫩的18在线播放91 | 国产色网站| 一级全黄毛片| 久久毛片网|