摘要:皮膚作為人體最大的器官,其神經(jīng)內(nèi)分泌系統(tǒng)在維持皮膚健康和外觀方面意義重大。皮膚既可作為效應(yīng)器官,受中樞神經(jīng)內(nèi)分泌系統(tǒng)調(diào)控,又能夠自主產(chǎn)生及分泌多種神經(jīng)遞質(zhì)與激素。本文綜述皮膚神經(jīng)內(nèi)分泌系統(tǒng)在傷口愈合、色素代謝、皮膚老化、神經(jīng)源性炎癥及毛發(fā)生長(zhǎng)等生理病理過(guò)程中的作用,以期發(fā)掘相關(guān)皮膚病的潛在治療靶點(diǎn)。
[關(guān)鍵詞]神經(jīng)內(nèi)分泌;色素代謝;皮膚老化;玫瑰痤瘡;脫發(fā)
[中圖分類號(hào)]R751" " [文獻(xiàn)標(biāo)志碼]A" " [文章編號(hào)]1008-6455(2025)09-0194-05
Advances in Multi-target Modulation of Cutaneous Neuroendocrine System for Aesthetic Medicine
SONG Jiao1, ZHOU Jielun2, ZHANG Wenjuan1, HUANG Weiqiang2, XU Menglu2,
LU Hailiang2, LU Nan1
(1. Shanghai Kanghua Times Biomedical Technology Co., Ltd, Shanghai 200011, China; 2. Shenzhen Liran Cosmetics Co., Ltd, Shenzhen 518033, Guangdong, China )
Abstract: As the largest organ of the human body, the cutaneous neuroendocrine system plays a pivotal role in maintaining its health and appearance. The skin not only functions as an effector organ regulated by the central neuroendocrine system but also autonomously produces and secretes diverse neurotransmitters and hormones. This article reviews the critical roles of the cutaneous neuroendocrine system in physiological and pathological processes, including wound healing, pigment metabolism, skin aging, neurogenic inflammation, and hair growth, with the aim of exploring potential therapeutic targets for related skin disorders.
Key words: cutaneous neuroendocrine; pigment metabolism; skin aging; rosacea; hair loss
皮膚作為人體與外界環(huán)境間的關(guān)鍵屏障,在維持機(jī)體內(nèi)環(huán)境穩(wěn)態(tài)方面發(fā)揮著不可或缺的作用[1]。皮膚局部獨(dú)立的神經(jīng)內(nèi)分泌系統(tǒng)如下丘腦-垂體-腎上腺(Hypothalamo–pituitary-adrenal,HPA)軸、下丘腦-垂體-甲狀腺(Hypothalamo-pituitary-thyroid,HPT)軸等獨(dú)立調(diào)節(jié)網(wǎng)絡(luò),協(xié)同生物胺、褪黑素等活性分子,感知與整合外部信號(hào),協(xié)調(diào)局部與全身的生理活動(dòng)[2-3]。該系統(tǒng)的失衡與色素代謝紊亂、皮膚老化、神經(jīng)源性炎癥、脫發(fā)等諸多皮膚問(wèn)題密切相關(guān)[4-5]。現(xiàn)就皮膚內(nèi)分泌系統(tǒng)對(duì)皮膚健康及美容的影響及相關(guān)臨床研究進(jìn)行綜述。
1" 皮膚的神經(jīng)內(nèi)分泌系統(tǒng)
1.1 皮膚作為中樞神經(jīng)內(nèi)分泌系統(tǒng)的效應(yīng)器官:人體皮膚廣泛表達(dá)神經(jīng)激素及神經(jīng)遞質(zhì)受體,因而長(zhǎng)期以來(lái)被視作中樞神經(jīng)內(nèi)分泌系統(tǒng)的外周效應(yīng)器官,在其調(diào)控下參與細(xì)胞增殖分化、血管調(diào)節(jié)、皮膚免疫等生理和病理生理過(guò)程。慢性壓力條件下,下丘腦室旁核離散神經(jīng)元產(chǎn)生促腎上腺皮質(zhì)激素釋放激素(Corticotropin-Releasing Hormone,CRH)激活垂體前葉的CRHR受體,促使其生成阿片促黑素細(xì)胞皮質(zhì)素原(Proopiomelanocortin,POMC)并加工裂解成促腎上腺皮質(zhì)激素(Adrenocorticotropic Hormone,ACTH)、黑素細(xì)胞刺激素(Melanocyte-stimulating hormone,α-MSH)、β內(nèi)啡肽等多種神經(jīng)肽,最終刺激腎上腺皮質(zhì)產(chǎn)生并分泌糖皮質(zhì)激素(GC)以抑制炎癥、維持皮膚穩(wěn)態(tài)[6-8]。生理情況下,GC通過(guò)負(fù)反饋機(jī)制抑制HPA軸的過(guò)度活化,但慢性應(yīng)激會(huì)破壞該負(fù)反饋回路,致使HPA軸慢性激活,進(jìn)而引發(fā)GC抵抗[9]。同時(shí),皮膚附屬器功能受多軸協(xié)同調(diào)控:下丘腦-垂體-性腺軸通過(guò)雄激素-受體信號(hào)調(diào)節(jié)毛囊生長(zhǎng)及皮脂分泌[10]。而HPT軸的上游因子CRH和甲狀腺激素能夠激活人角質(zhì)形成細(xì)胞的線粒體活動(dòng),參與皮膚能量代謝與屏障修復(fù)[4,11]。
1.2 皮膚作為自主神經(jīng)內(nèi)分泌器官:隨著研究深入,大量證據(jù)表明除了被動(dòng)接受中樞神經(jīng)內(nèi)分泌系統(tǒng)的調(diào)控,皮膚本身也是重要的神經(jīng)內(nèi)分泌器官。表皮、真皮、皮下組織及其附屬器(毛囊、汗腺、皮脂腺)乃至皮膚菌群,均能夠產(chǎn)生經(jīng)典神經(jīng)激素和神經(jīng)遞質(zhì),如CRH、ACTH、促甲狀腺素釋放激素(Thyrotropin-releasing hormone,TRH)、促甲狀腺激素(Thyroid Stimulating Hormone,TSH)、α-MSH、褪黑素、β內(nèi)啡肽、催乳素等[3,12]。這一發(fā)現(xiàn)合理地解釋了為何人體外周血中TRH水平較低,而頭皮組織中卻存在豐富的TRH受體。皮膚局部也表達(dá)HPA軸同源物以協(xié)調(diào)對(duì)應(yīng)激源的反應(yīng),但作用方式與中樞HPA軸有所不同。表皮細(xì)胞層次有序且排列緊密,皮膚HPA系統(tǒng)能夠以旁分泌、自分泌和內(nèi)分泌的方式協(xié)調(diào)或獨(dú)立運(yùn)作,細(xì)胞間兼具生產(chǎn)者與靶標(biāo)的角色[3]。例如,角質(zhì)形成細(xì)胞、黑素細(xì)胞和血管內(nèi)皮細(xì)胞均可分泌CRH,誘導(dǎo)毛囊、汗腺及自身產(chǎn)生POMC[13-14]。早在2002年,Slominski AT等[15]就已檢測(cè)到離體培養(yǎng)的人類皮膚和成纖維細(xì)胞表達(dá)TRH,后續(xù)研究進(jìn)一步在正常皮膚(尤其是毛囊)中檢測(cè)到TRH、TSH的mRNA及蛋白[16],這些結(jié)果充分證明皮膚內(nèi)分泌系統(tǒng)存在中樞HPT軸的同源等價(jià)物。
此外,皮膚分布著眾多的神經(jīng)纖維網(wǎng)絡(luò),擁有膽堿能、兒茶酚胺能系統(tǒng),褪黑素和大麻素系統(tǒng),同時(shí)也是類固醇合成的重要器官[17],能夠合成皮質(zhì)類固醇、促性腺激素、雌激素、雄激素、P物質(zhì)(Substance P,SP)、神經(jīng)肽Y(Neuropeptide Y,NPY)、降鈣素基因相關(guān)肽(Calcitonin gene-related peptide,CGRP)等眾多神經(jīng)肽和神經(jīng)激素[18]。皮膚的色素代謝、皮脂分泌、氧化應(yīng)激、炎癥反應(yīng)等生理病理過(guò)程與這些分子及其受體間的相互作用密切相關(guān)。
2" 皮膚神經(jīng)內(nèi)分泌與傷口愈合
皮膚神經(jīng)內(nèi)分泌系統(tǒng)在傷口愈合中扮演多種調(diào)控角色,其通過(guò)激素、神經(jīng)肽與免疫細(xì)胞的相互作用,控制炎癥、組織再生及屏障重建。在傷口急性愈合階段,傷害性感覺(jué)神經(jīng)元釋放的CGRP通過(guò)RAMP1受體激活中性粒細(xì)胞和巨噬細(xì)胞,誘導(dǎo)其凋亡加速并增強(qiáng)胞葬作用,從而促進(jìn)炎癥消退;同時(shí),CGRP上調(diào)TSP-1表達(dá),抑制免疫細(xì)胞過(guò)度遷移,并驅(qū)動(dòng)巨噬細(xì)胞向M2型極化,為增殖期創(chuàng)造微環(huán)境;局部給予CGRP能夠有效促進(jìn)糖尿病小鼠傷口愈合[19]。褪黑素通過(guò)非受體依賴途徑清除自由基,激活核因子E2相關(guān)因子2(Nuclear factor erythroid 2-related factor 2, Nrf2)通路增強(qiáng)抗氧化酶表達(dá),并抑制NF-κB介導(dǎo)的炎癥反應(yīng),其局部應(yīng)用可促進(jìn)血管內(nèi)皮生長(zhǎng)因子(Vascular endothelial growth factor,VEGF)依賴的血管生成[20]。慢性傷口中,miR-203異常高表達(dá)通過(guò)抑制p63阻礙角質(zhì)形成細(xì)胞遷移,Toll樣受體(Toll like receptor,TLR)2/4過(guò)度激活導(dǎo)致持續(xù)炎癥,疊加皮膚菌群紊亂共同破壞上皮化進(jìn)程[21]。表皮干細(xì)胞的動(dòng)態(tài)平衡受皮質(zhì)醇/腎上腺素調(diào)控,而運(yùn)動(dòng)可通過(guò)增強(qiáng)皮質(zhì)醇應(yīng)激反應(yīng)性改善皮膚血流及氧供,顯著加速愈合[22]。
3" 皮膚神經(jīng)內(nèi)分泌與色素代謝
色素異常性皮膚病多由黑素細(xì)胞數(shù)量或功能異常引發(fā)。慢性壓力或應(yīng)激事件誘導(dǎo)的中樞及皮膚HPA軸活化在白癜風(fēng)發(fā)病進(jìn)程中具有重要作用[23]。研究發(fā)現(xiàn),白癜風(fēng)患者皮損處分泌NPY和CGRP的神經(jīng)纖維數(shù)量增多[24],泛發(fā)性白癜風(fēng)患者血清中兒茶酚胺類神經(jīng)遞質(zhì)水平顯著高于健康人群[25],表明在遺傳易感性基礎(chǔ)上,神經(jīng)內(nèi)分泌紊亂與色素異常密切相關(guān)。角質(zhì)形成細(xì)胞受UVB照射后,可產(chǎn)生促進(jìn)黑素細(xì)胞生成的激素(如α-MSH)[26],并以旁分泌形式作用于黑素細(xì)胞內(nèi)的黑皮質(zhì)素1受體(Melanocortin 1 receptor,MC1R),激活下游小眼畸形相關(guān)轉(zhuǎn)錄因子(Microphthalmia-associated transcription factor,MITF)的轉(zhuǎn)錄,通過(guò)誘導(dǎo)酪氨酸酶、酪氨酸酶相關(guān)蛋白1和2的轉(zhuǎn)錄與活化促進(jìn)黑色素合成,誘導(dǎo)褐黑素向真黑素轉(zhuǎn)化,并增強(qiáng)細(xì)胞DNA修復(fù)和抗氧化能力[27-29]。1980年,Sawyer等合成了α-MSH類似物阿法諾肽[30],隨后大量臨床試驗(yàn)驗(yàn)證了其單獨(dú)或聯(lián)合UVB或小分子抑制劑治療白癜風(fēng)的有效性與安全性[31-33],另有研究者比較了白癜風(fēng)患者光療前后皮損處α-MSH和MITF的表達(dá)與皮損改善情況,認(rèn)為α-MSH-MITF軸是判斷白癜風(fēng)光療預(yù)后的有效指標(biāo)[34]。此外,該外源性神經(jīng)肽對(duì)多形性日光疹[35]、紅細(xì)胞生成性原卟啉病[36]等光敏性皮膚病也有治療作用。
與白癜風(fēng)相反,皮膚細(xì)胞受UVA照射刺激后,會(huì)上調(diào)α-MSH或POMC等神經(jīng)肽表達(dá)水平,誘導(dǎo)黑素細(xì)胞合成黑色素,引發(fā)皮膚老化、色素沉著及黃褐斑等系列問(wèn)題[37-38]。一項(xiàng)臨床研究顯示,使用α-MSH拮抗劑十一碳烯酰苯丙氨酸治療黃褐斑,12周治療有效率達(dá)85%,且不良反應(yīng)輕微[39]。在另一項(xiàng)自對(duì)照研究中,含α-葡萄素的外用制劑可抑制α-MSH、組胺等分子活性,降低了患者面部黃褐斑和雀斑的黑色素指數(shù)[40]。
4" 皮膚神經(jīng)內(nèi)分泌與皮膚老化
皮膚老化表現(xiàn)為結(jié)構(gòu)完整性和形態(tài)特征改變以及生理功能的逐漸衰退,其發(fā)生機(jī)制涉及基因與外界環(huán)境因素作用。隨著年齡增長(zhǎng),人的毛囊皮脂腺中CRH和CRH1表達(dá)水平上升,皮膚局部對(duì)壓力刺激逐漸敏感,提示皮膚HPA軸持續(xù)活化可能是皮膚老化的關(guān)鍵因素之一[41]。不良的生活習(xí)慣如熬夜使用電子設(shè)備所致生物鐘紊亂及藍(lán)光暴露可通過(guò)抑制干細(xì)胞再生能力及加劇氧化應(yīng)激加速皮膚衰老并增加色素沉著[42]。褪黑素在人體晝夜節(jié)律調(diào)節(jié)和抗氧化應(yīng)激中起重要作用,其不僅由松果體分泌,人體多種內(nèi)臟器官及皮膚組織均可產(chǎn)生大量褪黑素,且遵循晝夜節(jié)律[43-44]。褪黑素參與皮膚抗衰過(guò)程有受體依賴性和非受體依賴性兩種途徑。其與膜結(jié)合褪黑素1型受體(MT1)或褪黑素2型受體(MT2)結(jié)合后,可激活抗氧化酶表達(dá),增強(qiáng)DNA修復(fù)[45-46];還可通過(guò)非受體途徑與醌還原酶-2、鈣調(diào)蛋白等調(diào)節(jié)蛋白結(jié)合,發(fā)揮抗氧化作用維持線粒體穩(wěn)態(tài)[47-48]。研究表明,褪黑素可增強(qiáng)角質(zhì)形成細(xì)胞抵御UVB誘導(dǎo)的氧化應(yīng)激和DNA損傷能力[49],同時(shí)抑制加速衰老相關(guān)的哺乳動(dòng)物雷帕霉素靶蛋白(Mammalian target of rapamycin,mTOR)受體1通路蛋白活性及基質(zhì)金屬蛋白酶(Matrix metalloproteinase,MMP)-1的表達(dá),并上調(diào)VEGF-A及原纖維蛋白1的蛋白表達(dá)以促進(jìn)膠原再生[50]。外用褪黑素制劑可改善皮膚彈性,減少魚(yú)尾紋并減少吸煙所致的氧化損傷[51]。然而,目前臨床證據(jù)仍較為有限,需更大規(guī)模的臨床研究驗(yàn)證褪黑素干預(yù)皮膚老化的長(zhǎng)效性和安全性,并進(jìn)一步解析其作用機(jī)制及個(gè)體差異。
5" 皮膚神經(jīng)內(nèi)分泌與神經(jīng)源性炎癥
皮膚是人體神經(jīng)分布最為密集的器官之一,其各層次的感覺(jué)神經(jīng)和自主神經(jīng)纖維網(wǎng)構(gòu)成皮膚神經(jīng)內(nèi)分泌系統(tǒng)的重要部分,并通過(guò)感知痛覺(jué)、觸覺(jué)、溫度、振動(dòng)等刺激調(diào)控細(xì)胞增殖、分化和免疫應(yīng)答,實(shí)現(xiàn)皮膚與神經(jīng)、內(nèi)分泌及免疫系統(tǒng)的動(dòng)態(tài)交互[52-53]。然而,在部分炎癥性皮膚病中,皮膚組織神經(jīng)密度出現(xiàn)異常。例如,銀屑病患者皮損處神經(jīng)增生明顯,SP、CGRP、生長(zhǎng)抑素、VIP等神經(jīng)肽的分泌增加,激活瘙癢相關(guān)信號(hào)通路并加劇局部炎癥反應(yīng)[54]。玫瑰痤瘡皮損中,感覺(jué)神經(jīng)元密度異常升高[55],瞬時(shí)受體電位香草樣型(Transient receptor potential vanilloid,TRPV)1、TRPV4、順勢(shì)電位受體錨蛋白(Transient receptor potential ankyrin,TRPA)1陽(yáng)離子通道在神經(jīng)、角質(zhì)形成細(xì)胞、肥大細(xì)胞和/或免疫細(xì)胞上過(guò)度表達(dá)且高度敏感[56-57],可被溫度、機(jī)械、化學(xué)刺激激活,促使SP、CGRP、VIP等血管活性物質(zhì)釋放,引發(fā)毛細(xì)血管擴(kuò)張[5,58]。其中,SP和VIP可誘導(dǎo)肥大細(xì)胞脫顆粒,釋放VEGF、IL-1、IL-8、TNF-α等促炎細(xì)胞因子及CCL2、CXCL8等趨化因子,進(jìn)一步放大毛細(xì)血管擴(kuò)張及神經(jīng)源性炎癥[59]。針對(duì)神經(jīng)-血管-炎癥之間的交互作用,研究表明可通過(guò)注射A型肉毒毒素抑制乙酰膽堿等血管活性神經(jīng)遞質(zhì)的釋放并下調(diào)瞬時(shí)受體電位陽(yáng)離子通道的表達(dá)治療玫瑰痤瘡[60]。
除了異常神經(jīng)網(wǎng)絡(luò),CRH作為皮膚神經(jīng)內(nèi)分泌系統(tǒng)的核心分子之一,亦可引起肥大細(xì)胞脫顆粒、增加血管通透性、促進(jìn)皮脂腺細(xì)胞分泌IL-6、IL-8等細(xì)胞因子,并通過(guò)MAPK和NF-κB途徑誘導(dǎo)局部炎癥反應(yīng)[61]。同時(shí),CRH可增加TLR表達(dá),激活神經(jīng)內(nèi)分泌大麻素和香草素途徑[62],TLR受蠕形螨等病原體產(chǎn)生的病原體相關(guān)分子模式和損傷相關(guān)分子模式刺激后,可促進(jìn)促炎細(xì)胞因子、趨化因子和抗菌肽(AMP)如cathelicidin類的產(chǎn)生與分泌[63],后者在激肽釋放酶5(KLK5)催化下裂解為活性形式LL-37,參與玫瑰痤瘡的發(fā)生發(fā)展[64]。
6" 皮膚神經(jīng)內(nèi)分泌與毛發(fā)疾病
人類毛囊作為高度敏感的神經(jīng)內(nèi)分泌微器官,兼具激素分泌與效應(yīng)器官雙重功能,其生理活動(dòng)受遺傳、內(nèi)分泌和壓力應(yīng)激等多因素調(diào)控。研究證實(shí),毛囊內(nèi)存在完整的類固醇代謝通路:真皮乳頭中高表達(dá)的類固醇硫酸酯酶可將脫氫表雄酮轉(zhuǎn)化為5α-還原酶底物,進(jìn)而生成二氫睪酮,通過(guò)與雄激素受體結(jié)合調(diào)控毛囊生長(zhǎng)周期[14,65],類固醇硫酸酯酶抑制劑通過(guò)靶向該通路已在雄激素性脫發(fā)及多毛癥治療中展現(xiàn)潛力[66]。與此同時(shí),交感神經(jīng)系統(tǒng)對(duì)毛囊干細(xì)胞呈現(xiàn)雙向調(diào)節(jié):急性壓力通過(guò)去甲腎上腺素過(guò)度激活導(dǎo)致黑色素干細(xì)胞的β2-腎上腺素受體信號(hào)異常,觸發(fā)黑素干細(xì)胞不可逆耗竭和永久性白發(fā),而適度的低溫刺激則通過(guò)NE激活干細(xì)胞促進(jìn)毛發(fā)再生[67],提示交感神經(jīng)張力在毛囊穩(wěn)態(tài)中的精細(xì)平衡。在免疫調(diào)控方面,斑禿患者毛囊局部SP基因表達(dá)顯著升高,其通過(guò)NK1R受體誘發(fā)神經(jīng)源性炎癥和氧化應(yīng)激,不僅破壞毛囊免疫豁免促進(jìn)脫發(fā)[67-68],還可能通過(guò)損傷黑素細(xì)胞線粒體功能加劇毛發(fā)變白,這與MC1R依賴的纖毛信號(hào)異常[69]及內(nèi)源性大麻素系統(tǒng)失調(diào)[70]共同構(gòu)成毛發(fā)疾病的交互網(wǎng)絡(luò)。值得注意的是,外用褪黑素可通過(guò)拮抗氧化應(yīng)激保護(hù)黑素細(xì)胞,緩解雄激素性脫發(fā)且不影響血清濃度;而TRH通過(guò)增強(qiáng)線粒體生物發(fā)生直接支持黑色素合成[70]。這些發(fā)現(xiàn)揭示了毛囊神經(jīng)內(nèi)分泌微環(huán)境通過(guò)腎上腺素受體信號(hào)異常、氧化應(yīng)激及能量代謝失衡等多途徑驅(qū)動(dòng)毛發(fā)生長(zhǎng)異常,為靶向去甲腎上腺素拮抗劑、褪黑素或線粒體激活劑等局部干預(yù)策略提供了理論依據(jù)。
7" 小結(jié)
皮膚在人體生理機(jī)能中占據(jù)著獨(dú)特且關(guān)鍵的地位,它既是抵御外界侵襲的首道防線,又是一個(gè)復(fù)雜且精密的神經(jīng)內(nèi)分泌樞紐。作為中樞神經(jīng)內(nèi)分泌系統(tǒng)的重要延伸與自主神經(jīng)內(nèi)分泌的核心驅(qū)動(dòng)單元,皮膚神經(jīng)內(nèi)分泌系統(tǒng)通過(guò)一系列復(fù)雜的信號(hào)通路和分子機(jī)制,調(diào)控色素代謝、老化進(jìn)程、炎癥反應(yīng)以及毛囊生理周期等關(guān)鍵生理病理過(guò)程,介導(dǎo)皮膚老化、玫瑰痤瘡、黃褐斑、斑禿等損容性皮膚問(wèn)題的發(fā)生發(fā)展。深入探究皮膚神經(jīng)內(nèi)分泌系統(tǒng),精準(zhǔn)靶向其關(guān)鍵分子與信號(hào)通路,在皮膚醫(yī)學(xué)與美容學(xué)領(lǐng)域展現(xiàn)出廣闊的應(yīng)用前景,有望成為解決諸多皮膚疾病難題、促進(jìn)皮膚健康及美容的重要策略與方法。
[參考文獻(xiàn)]
[1]Fuchs E. Epithelial skin biology: three decades of developmental biology, a hundred questions answered and a thousand new ones to address[J]. Curr Top Dev Biol, 2016,116:357-374.
[2]Leis K, Mazur E, Jablonska M J, et al. Endocrine systems of the skin[J]. Postepy Dermatol Alergol, 2019,36(5):519-523.
[3]Slominski A T, Slominski R M, Raman C, et al. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides[J]. Am J Physiol Cell Physiol, 2022,323(6):1757-1776.
[4]Vidali S, Knuever J, Lerchner J, et al. Hypothalamic-pituitary-thyroid axis hormones stimulate mitochondrial function and biogenesis in human hair follicles[J]. J Invest Dermatol, 2014,134(1):33-42.
[5]Choi J E, Di Nardo A. Skin neurogenic inflammation[J]. Semin Immunopathol, 2018,40(3):249-259.
[6]Antoni F A. Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor[J]. Endocr Rev, 1986,7(4):351-378.
[7]Douglass A M, Resch J M, Madara J C, et al. Neural basis for fasting activation of the hypothalamic-pituitary-adrenal axis[J]. Nature, 2023,620(7972):154-162.
[8]Spencer R L, Deak T. A users guide to HPA axis research[J]. Physiol Behav,2017,178,43-65.
[9]Abelson J L, Khan S, Liberzon I, et al. HPA axis activity in patients with panic disorder: review and synthesis of four studies[J]. Depress Anxiety, 2007,24(1):66-76.
[10]Grymowicz M, Rudnicka E, Podfigurna A, et al. Hormonal effects on hair follicles[J]. Int J Mol Sci, 2020,21(15):5342.
[11]Knuever J, Poeggeler B, Gaspar E, et al. Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis[J]. J Clin Endocrinol Metab, 2012,97(3):978-986.
[12]Zouboulis C C. Human skin: an independent peripheral endocrine organ[J]. Horm Res, 2000,54(5/6):230-242.
[13]Roosterman D, Goerge T, Schneider S W, et al. Neuronal control of skin function: the skin as a neuroimmunoendocrine organ[J]. Physiol Rev, 2006,86(4):1309-1379.
[14]Skobowiat C, Slominski A T. UVB activates hypothalamic-pituitary-adrenal axis in C57BL/6 mice[J]. J Invest Dermatol, 2015,135(6):1638-1648.
[15]Slominski A, Wortsman J, Kohn L, et al. Expression of hypothalamic-pituitary-thyroid axis related genes in the human skin[J]. J Invest Dermatol, 2002,119(6):1449-1455.
[16]Cianfarani F, Baldini E, Cavalli A, et al. TSH receptor and thyroid-specific gene expression in human skin[J]. J Invest Dermatol, 2010,130(1):93-101.
[17]Nikolakis G, Stratakis C A, Kanaki T, et al. Skin steroidogenesis in health and disease[J]. Rev Endocr Metab Disord, 2016,17(3):247-258.
[18]Slominski A, Zbytek B, Nikolakis G, et al. Steroidogenesis in the skin: implications for local immune functions[J]. J Steroid Biochem Mol Biol,2013,137(107-123).
[19]Lu Y Z, Nayer B, Singh S K, et al. CGRP sensory neurons promote tissue healing via neutrophils and macrophages[J]. Nature, 2024,628(8008):604-611.
[20]Sohn E H, Kim S N, Lee S R. Melatonin's impact on wound healing[J]. Antioxidants (Basel), 2024,13(10):1197.
[21]Pastar I, Stojadinovic O, Yin N C, et al. Epithelialization in wound healing: a comprehensive review[J]. Adv Wound Care (New Rochelle), 2014,3(7):445-464.
[22]Easterling M R, Engbrecht K M, Crespi E J. Endocrine regulation of epimorphic regeneration[J]. Endocrinology, 2019,160(12):2969-2980.
[23]Cao C, Lei J, Zheng Y, et al. The brain-skin axis in vitiligo[J]. Arch Dermatol Res, 2024,316(8):607.
[24]Tu C, Zhao D, Lin X. Levels of neuropeptide-Y in the plasma and skin tissue fluids of patients with vitiligo[J]. J Dermatol Sci, 2001,27(3):178-182.
[25]Basnet B, Bhushan A, Khan R, et al. Plasma amp; urinary catecholamines amp; urinary vanillylmandelic acid levels in patients with generalized vitiligo[J]. Indian J Med Res, 2018,147(4):384-390.
[26]Yardman-Frank J M, Fisher D E. Skin pigmentation and its control: from ultraviolet radiation to stem cells[J]. Exp Dermatol, 2021,30(4):560-571.
[27]Gibbs S, Murli S, De Boer G, et al. Melanosome capping of keratinocytes in pigmented reconstructed epidermis-effect of ultraviolet radiation and 3-isobutyl-1-methyl-xanthine on melanogenesis[J]. Pigment Cell Res, 2000,13(6):458-466.
[28]Del Marmol V, Beermann F. Tyrosinase and related proteins in mammalian pigmentation[J]. FEBS Lett, 1996,381(3):165-168.
[29]Aroca P, Urabe K, Kobayashi T, et al. Melanin biosynthesis patterns following hormonal stimulation[J]. J Biol Chem, 1993,268(34):25650-25655.
[30]Sawyer T K, Sanfilippo P J, Hruby V J, et al. 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: a highly potent alpha-melanotropin with ultralong biological activity[J]. Proc Natl Acad Sci U S A, 1980,77(10):5754-5758.
[31]Grimes P E, Hamzavi I, Lebwohl M, et al. The efficacy of afamelanotide and narrowband UV-B phototherapy for repigmentation of vitiligo[J]. JAMA Dermatol, 2013,149(1):68-73.
[32]Liang J, Yu Y, Li C, et al. Tofacitinib combined with melanocyte protector alpha-MSH to treat vitiligo through dextran based hydrogel microneedles[J]. Carbohydr Polym, 2023,305:120549.
[33]Chong S, Wei C, Feng L, et al. Silk fibroin-based hydrogel microneedles deliver alpha-MSH to promote melanosome delivery for vitiligo treatment[J]. ACS Biomater Sci Eng, 2023,9(6):3368-3378.
[34]Monib K M E, Sorour N E, Alhusseini N F, et al. Could alpha MSH-MIFT axis and IDH2 be considered promising predictors of non-segmental vitiligo response to NB-UVB phototherapy?[J]. J Clin Aesthet Dermatol, 2023,16(1):41-46.
[35]Fabrikant J, Touloei K, Brown S M. A review and update on melanocyte stimulating hormone therapy: afamelanotide[J]. J Drugs Dermatol, 2013,12(7):775-779.
[36]Langendonk J G, Balwani M, Anderson K E, et al. Afamelanotide for erythropoietic protoporphyria[J]. N Engl J Med, 2015,373(1):48-59.
[37]Kim M, Shibata T, Kwon S, et al. Ultraviolet-irradiated endothelial cells secrete stem cell factor and induce epidermal pigmentation[J]. Sci Rep, 2018,8(1):4235.
[38]Flori E, Mastrofrancesco A, Mosca S, et al. Sebocytes contribute to melasma onset[J]. iScience, 2022,25(3):103871.
[39]Katoulis A, Alevizou A, Soura E, et al. A double-blind vehicle-controlled study of a preparation containing undecylenoyl phenylalanine 2% in the treatment of melasma in females[J]. J Cosmet Dermatol, 2014,13(2):86-90.
[40]Yun C Y, Mi Ko S, Pyo Choi Y, et al. alpha-Viniferin improves facial hyperpigmentation via accelerating feedback termination of cAMP/PKA-signaled phosphorylation circuit in facultative melanogenesis[J]. Theranostics, 2018,8(7):2031-2043.
[41]Elewa R M, Abdallah M, Youssef N, et al. Aging-related changes in cutaneous corticotropin-releasing hormone system reflect a defective neuroendocrine-stress response in aging[J]. Rejuvenation Res, 2012,15(4):366-373.
[42]Kumari J, Das K, Babaei M, et al. The impact of blue light and digital screens on the skin[J]. J Cosmet Dermatol, 2023,22(4):1185-1190.
[43]Matsui M S, Pelle E, Dong K, et al. Biological rhythms in the skin[J]. Int J Mol Sci, 2016,17(6):801.
[44]Slominski A T, Hardeland R, Zmijewski M A, et al. Melatonin: a cutaneous perspective on its production, metabolism, and functions[J]. J Invest Dermatol, 2018,138(3):490-499.
[45]Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias[J]. Br J Pharmacol, 2018,175(16):3263-3280.
[46]Galano A, Tan D X, Reiter R J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK[J]. J Pineal Res, 2013,54(3):245-257.
[47]Boutin J A. Quinone reductase 2 as a promising target of melatonin therapeutic actions[J]. Expert Opin Ther Targets, 2016,20(3):303-317.
[48]Bocheva G, Slominski R M, Janjetovic Z, et al. Protective role of melatonin and its metabolites in skin aging[J]. Int J Mol Sci, 2022,23(3):1238.
[49]Janjetovic Z, Nahmias Z P, Hanna S, et al. Melatonin and its metabolites ameliorate ultraviolet B-induced damage in human epidermal keratinocytes[J]. J Pineal Res, 2014,57(1):90-102.
[50]Samra T, Gomez-Gomez T, Linowiecka K, et al. Melatonin exerts prominent, differential epidermal and dermal anti-aging properties in aged human eyelid skin ex vivo[J]. Int J Mol Sci, 2023,24(21):15963.
[51]Milani M, Sparavigna A. Antiaging efficacy of melatonin-based day and night creams: a randomized, split-face, assessor-blinded proof-of-concept trial[J]. Clin Cosmet Investig Dermatol, 2018, 11:51-57.
[52]Peters E M, Ericson M E, Hosoi J, et al. Neuropeptide control mechanisms in cutaneous biology: physiological and clinical significance[J]. J Invest Dermatol, 2006, 126(9):1937-1947.
[53]Misery L, Loser K, Stander S. Sensitive skin[J]. J Eur Acad Dermatol Venereol, 2016, 30(Suppl 1):S2-S8.
[54]Saraceno R, Kleyn C E, Terenghi G, et al. The role of neuropeptides in psoriasis[J]. Br J Dermatol, 2006, 155(5):876-882.
[55]Jin R, Luo L, Zheng J. The Trinity of Skin: Skin homeostasis as a neuro-endocrine-immune organ[J]. Life (Basel), 2022, 12(5):1211.
[56]Mascarenhas N L, Wang Z, Chang Y L, et al. TRPV4 mediates mast cell activation in cathelicidin-induced rosacea inflammation[J]. J Invest Dermatol, 2017, 137(4):972-975.
[57]Sulk M, Seeliger S, Aubert J, et al. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea[J]. J Invest Dermatol, 2012, 132(4):1253-1262.
[58]Rainer B M, Kang S, Chien A L. Rosacea: epidemiology, pathogenesis, and treatment[J]. Dermatoendocrinol, 2017, 9(1):e1361574.
[59]Castellani M L, Galzio R J, Felaco P, et al. VEGF, substance P and stress, new aspects: a revisited study[J]. J Biol Regul Homeost Agents, 2010, 24(3):229-237.
[60]樊娟麗,楊改娥,郭芳,等.光動(dòng)力聯(lián)合A型肉毒毒素面部微滴注射治療丘疹膿皰型玫瑰痤瘡的臨床療效與安全性研究[J].中國(guó)美容醫(yī)學(xué),2024,33(8):107-111.
[61]Yang X, Cai M. New insights into the mutual promotion of rosacea, anxiety, and depression from neuroendocrine immune aspects[J]. Clin Cosmet Investig Dermatol, 2023, 16:1363-1371.
[62]Jamieson B B, Kim J S, Iremonger K J. Cannabinoid and vanilloid pathways mediate opposing forms of synaptic plasticity in corticotropin-releasing hormone neurons[J]. J Neuroendocrinol, 2022, 34(4):e13084.
[63]Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response[J]. Nature, 2006, 442(7098):39-44.
[64]Yoon S H, Hwang I, Lee E, et al. Antimicrobial peptide LL-37 drives rosacea-like skin inflammation in an NLRP3-dependent manner[J]. J Invest Dermatol, 2021, 141(12):2885-2894.
[65]Hasan R, Juma H, Eid F A, et al. Effects of hormones and endocrine disorders on hair growth[J]. Cureus, 2022, 14(12):e32726.
[66]Hoffmann R, Rot A, Niiyama S, et al. Steroid sulfatase in the human hair follicle concentrates in the dermal papilla[J]. J Invest Dermatol, 2001, 117(6):1342-1348.
[67]Shi Y, Wan S, Song X. Role of neurogenic inflammation in the pathogenesis of alopecia areata[J]. J Dermatol, 2024, 51(5):621-631.
[68]Kim C, Shin J M, Kim D, et al. Role of substance P in regulating micro-milieu of inflammation in alopecia areata[J]. Ann Dermatol, 2022, 34(4):270-277.
[69]Tian X, Wang H, Liu S, et al. Melanocortin 1 receptor mediates melanin production by interacting with the BBSome in primary cilia[J]. PLoS Biol, 2024, 22(12):e3002940.
[70]Paus R, Langan E A, Vidali S, et al. Neuroendocrinology of the hair follicle: principles and clinical perspectives[J]. Trends Mol Med, 2014, 20(10):559-570.
[收稿日期]2025-01-13
本文引用格式:宋姣,周杰倫,張文娟,等.皮膚神經(jīng)內(nèi)分泌多靶點(diǎn)調(diào)控在醫(yī)療美容中的研究進(jìn)展[J].中國(guó)美容醫(yī)學(xué),2025,34(9):194-198.