【摘要】 脂肪質(zhì)量和肥胖相關(guān)蛋白(FTO)是首個(gè)被確認(rèn)的肥胖易感基因,其RNA去甲基化酶功能在腫瘤中作用復(fù)雜。FTO通過調(diào)控mRNA的m6A修飾水平,影響致癌基因穩(wěn)定性和信號(hào)通路,驅(qū)動(dòng)腫瘤細(xì)胞代謝重編程、增殖、侵襲及化療耐藥。在肥胖相關(guān)腫瘤中,F(xiàn)TO表達(dá)呈組織特異性:在子宮內(nèi)膜癌、結(jié)直腸癌、胰腺癌和乳腺癌中高表達(dá),通過激活免疫抑制微環(huán)境和糖酵解促進(jìn)腫瘤進(jìn)展;在甲狀腺癌中低表達(dá),通過調(diào)控鐵死亡抑制惡變;在卵巢癌和肝癌中則發(fā)揮促癌或抑癌的雙重作用,取決于分子背景和亞型。FTO水平與腫瘤分期、轉(zhuǎn)移及預(yù)后密切相關(guān),可作為新型預(yù)后標(biāo)志物。靶向FTO的小分子抑制劑已在臨床前模型中顯現(xiàn)抗腫瘤潛力,為肥胖相關(guān)腫瘤的精準(zhǔn)干預(yù)提供新策略。文章綜述FTO在肥胖相關(guān)腫瘤中的分子機(jī)制與轉(zhuǎn)化前景,為精準(zhǔn)醫(yī)療策略提供理論支持。
【關(guān)鍵詞】 脂肪質(zhì)量和肥胖相關(guān)蛋白;m6A去甲基化酶;肥胖相關(guān)腫瘤;治療靶點(diǎn);卵巢癌;甲狀腺癌;乳腺癌
Research progress on fat mass and obesity-associated protein in obesity-related tumors
LI Zelong1,2,3, HUANG Junwei2,3, CHEN Hao2,3, YING Yong1,3, XIE Yang1,3, ZENG Xiangtai1,2,3
(1.Department of Thyroid Hernia Surgery, First Affiliated Hospital of Gannan Medical College, Ganzhou 341000, China;
2.Key Laboratory of Thyroid Tumor of Ganzhou, Ganzhou 341000, China; 3.Institute of Thyroid Diseases, Gannan Medical College,
Ganzhou 341000, China)
Corresponding author: ZENG Xiangtai, E-mail: xiangtai.zeng@gmu.edu.cn
【Abstract】 Fat mass and obesity-associated protein (FTO), the first identified obesity-susceptibility gene, exerts complex roles in tumors via its RNA demethylase function. Through modulation of N6-methyladenosine (m6A) modification levels on mRNA, FTO influences the stability of oncogenes and related signaling pathways, thereby promoting metabolic reprogramming, proliferation, invasion, and chemoresistance in tumor cells. In obesity-related tumors, FTO expression exhibits tissue-specific patterns: it is highly expressed in endometrial, colorectal, pancreatic and breast cancers, where it facilitates tumor progression by activating an immunosuppressive microenvironment and glycolysis. Conversely, FTO expression is downregulated in thyroid cancer, inhibiting malignancy through the regulation of ferroptosis. Additionally, FTO exerts dual oncogenic or tumor-suppressive roles in ovarian and liver cancers, depending on molecular contexts and subtypes. FTO expression correlates closely with tumor staging, metastasis, and prognosis, underscoring its potential as a novel prognostic biomarker. Small-molecule inhibitors targeting FTO have demonstrated promising antitumor effects in preclinical models, presenting a new therapeutic strategy for precision intervention in obesity-associated cancers. This review summarizes the molecular mechanisms and translational prospects of FTO in obesity-related tumors, providing theoretical support for precision medical strategies.
【Key words】 Fat mass and obesity-associated protein (FTO); m6A demethylase; Obesity-related tumors;
Therapeutic targets; Ovarian cancer; Thyroid cancer; Breast cancer
肥胖是一種由多因素介導(dǎo)的慢性代謝性疾病,其特征是能量攝入長(zhǎng)期超過消耗導(dǎo)致的異常或過度脂肪蓄積。根據(jù)中國(guó)成人肥胖診斷標(biāo)準(zhǔn),體質(zhì)量指數(shù)(body mass index,BMI)≥28.0 kg/m2可判定為肥胖[1]。肥胖可引發(fā)身體結(jié)構(gòu)異常、生理功能紊亂和機(jī)能障礙[2-3],同時(shí)也是影響癌癥死亡率的關(guān)鍵因素之一,隨著全球超重/肥胖患病率持續(xù)上升,肥胖相關(guān)腫瘤負(fù)擔(dān)也顯著增加[4]。流行病學(xué)研究顯示,肥胖至少與十余種癌癥存在關(guān)聯(lián)[4-5],
這些腫瘤的發(fā)病風(fēng)險(xiǎn)隨BMI增加而升高,被統(tǒng)稱為肥胖相關(guān)腫瘤。肥胖相關(guān)腫瘤在代謝方面具有顯著的偏好性和特征,主要表現(xiàn)為糖酵解增強(qiáng)、脂代謝異常和慢性低度炎癥。這些代謝變化為脂肪質(zhì)量和肥胖相關(guān)蛋白(fat mass and obesity-associated protein,F(xiàn)TO)通過6-甲基腺嘌呤(N6-methyladenosine,m6A)去甲基化作用調(diào)控腫瘤進(jìn)展提供了生物學(xué)基礎(chǔ)[4, 6]。
FTO在人體多種組織中表達(dá),尤其在代謝活躍器官如脂肪組織、心臟及中樞神經(jīng)系統(tǒng)中表達(dá)較高[7]。2007年GWAS研究首次揭示FTO基因多態(tài)性與BMI密切相關(guān),推動(dòng)了其作為肥胖易感基因的深入研究。后續(xù)研究證實(shí),F(xiàn)TO編碼的烷烴單加氧酶(alkane monooxygenase,AlkB)家族去甲基化酶通過調(diào)控m6A修飾參與能量代謝與脂肪細(xì)胞分化,成為肥胖-腫瘤交互作用的關(guān)鍵分子[8]。本文將從FTO的分子特性出發(fā),系統(tǒng)闡述其在肥胖相關(guān)腫瘤中的調(diào)控網(wǎng)絡(luò)(m6A修飾、信號(hào)通路、代謝免疫交互),分癌種總結(jié)其促癌或抑癌功能,并探討其臨床轉(zhuǎn)化潛力。
1 FTO的結(jié)構(gòu)與功能
FTO是一種AlkB家族的去甲基化酶,該家族成員在核酸去甲基化方面發(fā)揮關(guān)鍵作用,能夠直接去除DNA和RNA堿基上的N-甲基修飾,從而調(diào)控基因表達(dá)、維持基因組穩(wěn)定性以及參與RNA代謝過程[9]。作為AlkB家族的重要成員,F(xiàn)TO被認(rèn)為是導(dǎo)致肥胖的首個(gè)且具有強(qiáng)相關(guān)性的基因,位于染色體16q12.2上,全長(zhǎng)約410.50 kb,包含8個(gè)內(nèi)含子和9個(gè)外顯子[8]。FTO能夠催化單鏈DNA和RNA中的去甲基化反應(yīng),特別是在3-甲基胸腺嘧啶和3-甲基尿嘧啶的去甲基化過程中發(fā)揮作用[10-11]。此外,F(xiàn)TO對(duì)m6A具有較高的親和力,并且能夠逆轉(zhuǎn)信使RNA(messenger RNA,mRNA)中的m6A修飾,顯示出m6A修飾的可逆性[12]。FTO主要通過去甲基化mRNA上的m6A修飾,影響關(guān)鍵基因的穩(wěn)定性及信號(hào)通路活性,進(jìn)而參與多種生理和病理過程,包括能量代謝、脂肪細(xì)胞分化以及腫瘤發(fā)生發(fā)展等[8]。FTO基因編碼的蛋白包含505個(gè)氨基酸,分子量約為58 282 Da,
且在不同物種中高度保守[13]。FTO蛋白由C端結(jié)構(gòu)域和N端結(jié)構(gòu)域組成,這兩個(gè)結(jié)構(gòu)域的相互作用對(duì)FTO的催化活性至關(guān)重要。其中,N端結(jié)構(gòu)域包含特定的核苷酸識(shí)別區(qū)域和一個(gè)獨(dú)特的環(huán)結(jié)構(gòu),該環(huán)結(jié)構(gòu)有助于FTO識(shí)別并結(jié)合甲基化的RNA底物,阻止未甲基化的DNA和RNA進(jìn)入活性位點(diǎn)[11, 13]。FTO通過核輸出蛋白2(exportin 2,XPO2)介導(dǎo)的核質(zhì)穿梭動(dòng)態(tài)調(diào)控不同RNA底物(如snRNA、mRNA)的m6A/N6,2’-O-二甲基腺苷(N6,2’-O-dimethyladenosine,m6Am)去甲基化。在細(xì)胞核內(nèi),F(xiàn)TO主要參與小核RNA(small nuclear RNA,snRNA)的m6A和m6Am去甲基化,而在細(xì)胞質(zhì)中則主要參與mRNA的m6Am去甲基化[14-15]。基于上述分子特性,F(xiàn)TO在肥胖相關(guān)腫瘤中的調(diào)控網(wǎng)絡(luò)呈現(xiàn)高度復(fù)雜性,下文將具體探討其作用機(jī)制。
2 FTO在肥胖相關(guān)腫瘤中的調(diào)控機(jī)制
FTO通過動(dòng)態(tài)調(diào)控mRNA m6A修飾水平,調(diào)控多條信號(hào)通路及關(guān)鍵基因表達(dá),參與代謝重編程、免疫逃逸、干性維持、EMT、鐵死亡抑制和化療耐藥等過程,在肥胖相關(guān)腫瘤中發(fā)揮促癌或抑癌作用(圖1)。下文將分別從m6A修飾調(diào)控、信號(hào)通路激活及代謝-免疫-肥胖因子交互3個(gè)方面進(jìn)行闡述。
2.1 m6A修飾與基因表達(dá)的調(diào)控
FTO作為一種m6A去甲基化酶,通過調(diào)控mRNA的m6A修飾水平,直接影響其穩(wěn)定性,從而調(diào)控關(guān)鍵致癌基因的表達(dá)。MYC是一種重要的轉(zhuǎn)錄因子,其高表達(dá)能夠促進(jìn)細(xì)胞周期進(jìn)展和增殖。FTO能通過去甲基化MYC mRNA,增強(qiáng)其穩(wěn)定性,從而上調(diào)MYC蛋白表達(dá)[16]。此外,F(xiàn)TO還能通過調(diào)控細(xì)胞分裂周期25C蛋白(cell division cycle 25C,CDC25C)等的m6A修飾水平,進(jìn)而調(diào)節(jié)腫瘤細(xì)胞的增殖和代謝重編程[17]。FTO與肥胖相關(guān)腫瘤緊密相連,在腫瘤的發(fā)生、發(fā)展和侵襲過程中扮演了重要角色。
2.2 信號(hào)通路的激活
FTO通過調(diào)控m6A修飾水平,影響關(guān)鍵基因的表達(dá),從而激活多種信號(hào)通路,驅(qū)動(dòng)腫瘤的代謝重編程、增殖、侵襲及轉(zhuǎn)移。FTO能夠穩(wěn)定磷脂酰肌醇3-激酶(phosphoinositide 3-kinase,PI3K)/
蛋白激酶B(protein kinase B,AKT)信號(hào)通路中的關(guān)鍵基因mRNA,通過去甲基化修飾延長(zhǎng)其半衰期,增加相應(yīng)蛋白的表達(dá)水平。這種調(diào)控作用增強(qiáng)了PI3K/AKT信號(hào)通路的活性,促進(jìn)了細(xì)胞的增殖和存活[18]。激活的PI3K/AKT和MAPK信號(hào)通路能促使FTO通過Cyclin D1促進(jìn)細(xì)胞增殖、通過基質(zhì)金屬蛋白酶2/9(matrix metallopeptidase 2/9,MMP2/9)增強(qiáng)細(xì)胞侵襲[19]。FTO還能通過同源框B13(Homeobox B13,HOXB13)、卷曲類受體10(frizzled class receptor 10,F(xiàn)ZD10)等靶標(biāo)基因激活Wnt信號(hào)通路,促進(jìn)腫瘤的侵襲、轉(zhuǎn)移和化學(xué)治療耐藥[20-21]。此外,Wnt信號(hào)通路激活會(huì)誘導(dǎo)EZH2與β-catenin結(jié)合,從而抑制FTO的表達(dá)。FTO表達(dá)下調(diào)可升高M(jìn)YC mRNA的m6A修飾水平,進(jìn)而招募YTH結(jié)構(gòu)域家族蛋白1(YTH N6-methyladenosine RNA binding protein F1,YTHDF1)結(jié)合促進(jìn)其翻譯,最終促進(jìn)腫瘤細(xì)胞的糖酵解、增殖及腫瘤發(fā)生[22]。在缺氧條件下,F(xiàn)TO的表達(dá)上調(diào),通過FTO-缺氧誘導(dǎo)因子-1(hypoxia inducible factor-1α,HIF-1α)-細(xì)胞程序性死亡-配體1(programmed cell death ligand 1,PD-L1)途徑促進(jìn)免疫抑制微環(huán)境形成,進(jìn)而促進(jìn)腫瘤的侵襲與轉(zhuǎn)移并增強(qiáng)化學(xué)治療耐藥[23-24]。通過這些機(jī)制,F(xiàn)TO促進(jìn)了腫瘤細(xì)胞的增殖、侵襲和轉(zhuǎn)移,增強(qiáng)了腫瘤對(duì)治療的耐受性,進(jìn)而在肥胖相關(guān)腫瘤的發(fā)生發(fā)展中發(fā)揮著重要作用。
2.3 代謝、免疫與肥胖因子的交互作用
FTO在肥胖相關(guān)腫瘤中通過與代謝、免疫及肥胖因子的復(fù)雜交互作用,進(jìn)一步調(diào)控腫瘤的惡性進(jìn)展。己糖激酶2(hexokinase2,HK2)作為糖酵解途徑中的限速酶,F(xiàn)TO能調(diào)控腫瘤代謝相關(guān)基因HK2的m6A修飾水平,通過代謝重編程為腫瘤細(xì)胞提供了必要的能量和生物合成原料,從而促進(jìn)腫瘤細(xì)胞的增殖[25]。此外,F(xiàn)TO通過調(diào)控免疫相關(guān)基因的表達(dá),影響腫瘤微環(huán)境中的免疫細(xì)胞活性。FTO能夠通過調(diào)控PD-L1的表達(dá),抑制免疫細(xì)胞的活性,促進(jìn)腫瘤的免疫逃逸。PD-L1的高表達(dá)使得腫瘤細(xì)胞能夠逃避免疫系統(tǒng)的攻擊,從而增強(qiáng)了腫瘤的侵襲和轉(zhuǎn)移能力[24]。肥胖因子如瘦素也對(duì)FTO的表達(dá)產(chǎn)生影響,這些因子在肥胖相關(guān)腫瘤中起到橋梁作用,通過調(diào)控FTO的表達(dá)進(jìn)一步影響腫瘤細(xì)胞的生物學(xué)行為。例如,瘦素能通過激活信號(hào)傳導(dǎo)及轉(zhuǎn)錄激活蛋白3(signal transducer and activator of transcription,STAT3)信號(hào)通路,上調(diào)FTO的表達(dá),從而增強(qiáng)腫瘤細(xì)胞的增殖和侵襲能力[26]。這種代謝、免疫與肥胖因子之間的復(fù)雜交互作用使FTO成為肥胖相關(guān)腫瘤發(fā)生發(fā)展中的關(guān)鍵調(diào)控因子。
3 FTO在肥胖相關(guān)腫瘤中的作用
3.1 子宮內(nèi)膜癌
在子宮內(nèi)膜癌中,癌組織中高表達(dá)的FTO能促進(jìn)腫瘤細(xì)胞的增殖,且與患者生存率下降、腫瘤浸潤(rùn)及淋巴結(jié)轉(zhuǎn)移正相關(guān)[19-20]。此外,F(xiàn)TO還與哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路密切相關(guān),Zhu等[27]的研究表明雌激素可以促進(jìn)FTO蛋白的核定位,進(jìn)而促進(jìn)子宮內(nèi)膜癌細(xì)胞的增殖。FTO在子宮內(nèi)膜癌中復(fù)雜的調(diào)控機(jī)制使其有望作為潛在的治療靶點(diǎn),未來的研究應(yīng)進(jìn)一步探討FTO在肥胖相關(guān)代謝紊亂與子宮內(nèi)膜癌惡性轉(zhuǎn)化之間所起到的橋梁作用。
3.2 卵巢癌
在卵巢癌中,F(xiàn)TO展現(xiàn)出復(fù)雜且矛盾的雙重作用,其具體功能取決于分子背景。一方面,F(xiàn)TO可作為腫瘤抑制因子,特異性的結(jié)合環(huán)磷酸腺苷(cyclic adenosine monophosphate,cAMP)水解酶PDE1C(phosphodiesterase 1C,PDE1C)和PDE4B(phosphodiesterase 4B,PDE4B)mRNA的3'UTR區(qū)域,導(dǎo)致水解酶蛋白表達(dá)的顯著下調(diào),胞內(nèi)cAMP升高,進(jìn)一步激活cAMP-蛋白激酶A(protein kinase A,PKA)-環(huán)磷腺苷效應(yīng)元件結(jié)合蛋白(cAMP-response element binding protein,CREB)通路。CREB的激活促進(jìn)了分化基因的表達(dá),同時(shí)抑制干細(xì)胞轉(zhuǎn)錄因子SRY-box轉(zhuǎn)錄因子2(SRY-box transcription factor 2,SOX2)/八聚體結(jié)合轉(zhuǎn)錄因子(octamer-binding transcription factor 4,OCT4),最終抑制卵巢癌干細(xì)胞的自我更新能力和腫瘤發(fā)生[28]。FTO還能通過去除NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD-like receptor thermal protein domain associated protein 3, NLRP3)mRNA的m6A修飾以增強(qiáng)其穩(wěn)定性,促進(jìn)NLRP3蛋白表達(dá),進(jìn)而激活半胱天冬酶1(cysteine-aspartic acid protease,Caspase-1)。Caspase-1切割細(xì)胞焦亡執(zhí)行者(gasdermin D,GSDMD),生成活性片段GSDMD-NT,GSDMD-NT在細(xì)胞膜上形成孔道并釋放促炎因子白細(xì)胞介素-1β(interleukin-1β,IL-1β)/IL-18,誘導(dǎo)細(xì)胞焦亡,最終逆轉(zhuǎn)卵巢癌順鉑耐藥性[29]。
另一方面,F(xiàn)TO也表現(xiàn)出促癌特性。與非癌性卵巢組織相比,卵巢腫瘤組織中FTO高表達(dá)顯著增強(qiáng)AKT磷酸化,進(jìn)而上調(diào)增殖標(biāo)志物增殖細(xì)胞核抗原(proliferating cell nuclear antigen,PCNA)蛋白表達(dá)。同時(shí),促凋亡蛋白細(xì)胞凋亡調(diào)節(jié)因子(BCL-2-associated X protein,Bax)下調(diào)而抗凋亡蛋白B淋巴細(xì)胞瘤-2(B-cell lymphoma-2,Bcl-2)上調(diào),并使自噬關(guān)鍵基因5(autophagy related 5,ATG5)表達(dá)上調(diào),自噬激活為腫瘤細(xì)胞提供能量和代謝支持,通過調(diào)控增殖-凋亡-自噬三重協(xié)同效應(yīng)驅(qū)動(dòng)卵巢癌惡性進(jìn)展[30]。此外,F(xiàn)TO低表達(dá)通過增加FZD10 mRNA的m6A修飾,穩(wěn)定FZD10表達(dá)并激活Wnt/β-catenin通路,增強(qiáng)DNA同源重組修復(fù)能力,從而促進(jìn)卵巢癌細(xì)胞對(duì)聚腺苷二磷酸核糖聚合酶抑制劑(poly ADP-ribose polymerase inhibitors,PARPi)的耐藥性[21]。FTO在卵巢癌中的雙重效應(yīng)(抑癌/促癌)由細(xì)胞類型與微環(huán)境依賴性調(diào)控決定:在普通癌細(xì)胞中高表達(dá)且促癌,在癌癥干細(xì)胞中低表達(dá)且抑癌,在PARPi耐藥細(xì)胞中低表達(dá)且能誘導(dǎo)化學(xué)治療耐藥,這表明FTO的功能取決于靶細(xì)胞狀態(tài)、治療壓力(如化學(xué)治療耐藥)及下游通路選擇。FTO的這種特性,為卵巢癌的治療及化學(xué)治療克服耐藥提供了潛在的治療策略。
3.3 肝 癌
在肝癌中,F(xiàn)TO展現(xiàn)出雙重作用。一方面,F(xiàn)TO在肝癌中高表達(dá),與患者的生存率和無病生存率呈負(fù)相關(guān)。其機(jī)制包括穩(wěn)定糖蛋白非轉(zhuǎn)移性黑色素瘤蛋白B(glycoprotein non-metastatic melanoma protein B,GPNMB)mRNA,激活A(yù)KT、細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)和Wnt信號(hào)通路來促進(jìn)細(xì)胞增殖、遷移和侵襲,以及通過影響免疫微環(huán)境促進(jìn)腫瘤生長(zhǎng)和轉(zhuǎn)移。GPNMB被包裝到肝癌細(xì)胞分泌的小囊泡中,這些小囊泡通過與CD8+ T細(xì)胞表面的多配體蛋白聚糖4(syndecan 4,SDC4)受體結(jié)合,抑制T細(xì)胞的激活,從而促進(jìn)腫瘤的免疫逃避[31]。FTO還能通過去甲基化修飾方式促進(jìn)人表皮生長(zhǎng)因子受體3(human epidermal growth factor receptor 3,ERBB3)和微管蛋白β4A IVa類基因(tubulin beta 4A class IVa,TUBB4A)的mRNA穩(wěn)定性,進(jìn)而激活A(yù)KT-mTOR信號(hào)軸,促進(jìn)肝癌細(xì)胞的存活及增殖,并維持肝癌細(xì)胞的骨架穩(wěn)定性及遷移能力[32]。另一方面,F(xiàn)TO在肝癌中也表現(xiàn)出抑癌作用,通過調(diào)控庫(kù)林4A(cullin 4A,CUL4A)mRNA的穩(wěn)定性,抑制肝細(xì)胞過度增殖。并且,肝細(xì)胞特異性FTO缺失也會(huì)增加腫瘤負(fù)擔(dān)[33]。值得注意的是,研究還表明,F(xiàn)TO抑制劑FB23/FB23-2能夠顯著抑制肝癌細(xì)胞的增殖和遷移,促進(jìn)其凋亡并影響其細(xì)胞骨架重排。體外實(shí)驗(yàn)和裸鼠移植瘤模型均顯示FB23-2具有良好的治療效果,提示FTO及其抑制劑可能成為未來肝癌治療的潛在干預(yù)目標(biāo)[32]。
3.4 結(jié)直腸癌
在結(jié)直腸癌中,F(xiàn)TO的表達(dá)水平顯著升高,發(fā)揮重要的促癌作用。FTO通過m6A修飾調(diào)控致癌因子髓樣鋅指蛋白1(myeloid zinc finger 1,MZF1),上調(diào)c-Myc的表達(dá),促進(jìn)癌細(xì)胞增殖和侵襲[16]。它還能影響CDC25C在腫瘤細(xì)胞周期的G2/M期轉(zhuǎn)換,促進(jìn)細(xì)胞周期進(jìn)展,增加細(xì)胞增殖能力。HK2作為糖酵解途徑中的關(guān)鍵限速酶,其高表達(dá)與腫瘤的惡性進(jìn)展密切相關(guān)。FTO的下調(diào)可激活叉頭框O蛋白(forkhead box O,F(xiàn)OXO)信號(hào)通路,增加HK2的表達(dá),從而增強(qiáng)腫瘤細(xì)胞的糖酵解能力,促進(jìn)腫瘤的生長(zhǎng)和進(jìn)展[25]。高表達(dá)的FTO還能通過其去甲基化酶活性,特異性去除溶質(zhì)載體家族7成員11(recombinant solute carrier family 7 member 11,SLC7A11)和谷胱甘肽過氧化物酶4(glutathione peroxidase 4,GPX4)mRNA上的m6A修飾,上調(diào)SLC7A11/GPX4蛋白表達(dá),使谷胱甘肽(glutathione,GSH)合成并抑制脂質(zhì)過氧化積累,幫助腫瘤細(xì)胞逃避鐵死亡,促進(jìn)其在氧化應(yīng)激下的存活,導(dǎo)致結(jié)直腸癌進(jìn)展[34]。此外,F(xiàn)TO還能穩(wěn)定核蛋白1(nuclear protein 1,NUPR1)的表達(dá),轉(zhuǎn)錄激活下游基因脂質(zhì)運(yùn)載蛋白2(lipocalin 2,LCN2)和鐵蛋白重鏈1(ferritin heavy chain 1,F(xiàn)TH1),降低細(xì)胞內(nèi)游離鐵水平,抑制鐵死亡并誘導(dǎo)化療耐藥[35]。FTO高表達(dá)與結(jié)直腸癌不良預(yù)后相關(guān),靶向FTO或聯(lián)合鐵死亡誘導(dǎo)劑有望成為克服結(jié)直腸癌治療抵抗的新策略。
3.5 胰腺癌
FTO在胰腺癌組織中高表達(dá),與患者不良預(yù)后密切相關(guān)。其機(jī)制包括降低組織因子通路抑制因子2(tissue factor pathway inhibitor 2,TFPI-2)mRNA的m6A修飾水平,減少其穩(wěn)定性,抑制TFPI-2表達(dá),從而促進(jìn)胰腺癌細(xì)胞增殖與侵襲[36]。當(dāng)轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor-β,TGF-β)信號(hào)激活時(shí),F(xiàn)TO表達(dá)上調(diào),結(jié)合上皮間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)關(guān)鍵轉(zhuǎn)錄因子鋅指結(jié)構(gòu)E-box-結(jié)合同源框1(zinc finger E-box-binding homeobox 1,ZEB1)mRNA,使ZEB1
蛋白上調(diào)驅(qū)動(dòng)EMT從而驅(qū)動(dòng)胰腺癌侵襲轉(zhuǎn)移和化學(xué)治療抵抗[37]。FTO還與胰腺癌的化學(xué)治療耐藥密切相關(guān),通過減少LINC01134的m6A修飾以增強(qiáng)其穩(wěn)定性,LINC01134競(jìng)爭(zhēng)性結(jié)合miR-140-3p,促進(jìn)Wnt家族成員5A(Wnt family member 5A,Wnt5A)表達(dá),進(jìn)而通過miR-140-3p/Wnt5A/Wnt通路激活Wnt/β-catenin信號(hào),增強(qiáng)胰腺癌細(xì)胞的干性特征和細(xì)胞周期進(jìn)程,導(dǎo)致對(duì)吉西他濱的耐藥性[38]。
3.6 甲狀腺癌
在甲狀腺乳頭狀癌(papillary thyroid carcinoma,PTC)中,F(xiàn)TO基因的表達(dá)水平與腫瘤的發(fā)生、發(fā)展密切相關(guān)。研究表明,F(xiàn)TO在PTC組織中的表達(dá)下調(diào)與腫瘤分級(jí)、淋巴結(jié)轉(zhuǎn)移以及患者年齡等關(guān)鍵臨床指標(biāo)顯著相關(guān),提示FTO可能作為PTC的獨(dú)立預(yù)后標(biāo)志物[39]。FTO低表達(dá)通過增加鈣黏蛋白12(cadherin 12,CDH12)mRNA的m6A修飾,增強(qiáng)胰島素樣生長(zhǎng)因子2 mRNA結(jié)合蛋白2(insulin like growth factor 2 mRNA binding protein 2,IGF2BP2)介導(dǎo)的mRNA穩(wěn)定性,上調(diào)CDH12蛋白表達(dá)并促進(jìn)神經(jīng)鈣黏蛋白/波形蛋白,抑制細(xì)胞間黏附分子1,激活EMT通路,最終促進(jìn)甲狀腺癌侵襲轉(zhuǎn)移[40]。FTO通過m6A甲基化修飾靶向腫瘤蛋白53(tumor protein 53,TP53),從而影響PTC的信號(hào)傳導(dǎo)和腫瘤轉(zhuǎn)移能力。FTO還參與IL-6/兩面神激酶(Janus kinase,JAK)/STAT3信號(hào)通路的調(diào)控,通過影響脂代謝和血脂水平,激活I(lǐng)L-6/JAK/STAT3信號(hào)通路,進(jìn)而調(diào)控糖酵解過程,抑制腫瘤生長(zhǎng)并增強(qiáng)免疫反應(yīng)[26]。此外,F(xiàn)TO過表達(dá)還可以通過激活PTC的鐵死亡機(jī)制,進(jìn)而阻止腫瘤的發(fā)展[41]。FTO在甲狀腺癌的發(fā)生、發(fā)展及預(yù)后中扮演著重要角色,可能成為PTC研究中一個(gè)具有潛力的生物標(biāo)志物和治療靶點(diǎn)。
3.7 乳腺癌
FTO在乳腺癌中發(fā)揮多效性促癌作用。臨床研究表明,F(xiàn)TO在人表皮生長(zhǎng)因子受體2(human epidermal growth factor receptor 2,HER-2)過表達(dá)型乳腺癌中表達(dá)最高,而在Luminal A/B1型中表達(dá)最低,其表達(dá)水平與曲妥珠單抗耐藥性呈正相關(guān)[42-43]。Ⅲ+Ⅳ期乳腺癌患者血清FTO水平顯著高于早期,且與腫瘤體積增大、淋巴結(jié)轉(zhuǎn)移及不良預(yù)后密切相關(guān),提示其作為診斷標(biāo)志物的潛力[44]。
FTO通過多種機(jī)制驅(qū)動(dòng)乳腺癌進(jìn)展。它能夠激活PI3K/AKT信號(hào)通路,促進(jìn)糖酵解代謝重編程,增加ATP生成以支持腫瘤增殖[18]。在缺氧條件下,F(xiàn)TO的表達(dá)上調(diào),激活HIF-1α信號(hào)通路,通過磷酸肌醇依賴性蛋白激酶1 (phosphoinositide-dependent protein kinase 1,PDK1)/AKT/STAT3軸增加PD-L1的表達(dá),進(jìn)而促進(jìn)乳腺癌細(xì)胞的侵襲和轉(zhuǎn)移[24]。此外,F(xiàn)TO還與乳腺癌的化學(xué)治療耐藥有關(guān),抑制FTO的活性可以增強(qiáng)曲妥珠單抗在治療乳腺癌中的效果[43]。高表達(dá)的FTO還能抑制25-羥基維生素D3 1-α-羥化酶(cytochrome P450 27B1,CYP27B1)mRNA穩(wěn)定性,使維生素D活化酶CYP27B1蛋白的表達(dá)下調(diào),進(jìn)而導(dǎo)致1,25-二羥維生素D3[1,25-dihydroxyvitamin D3,1,25-(OH)2D3]合成減少。1,25-(OH)2D3是維生素D受體的天然配體,具有抑制腫瘤增殖、增強(qiáng)化療敏感性的作用,1,25-(OH)2D3合成減少解除了對(duì)STAT3通路的抑制,STAT3磷酸化增加,轉(zhuǎn)錄激活下游促癌基因進(jìn)而促進(jìn)增殖并抑制凋亡,降低腫瘤細(xì)胞對(duì)化學(xué)治療藥物的敏感性[45]。這些發(fā)現(xiàn)表明,F(xiàn)TO通過表觀遺傳調(diào)控和代謝重塑在乳腺癌中發(fā)揮促癌作用,靶向FTO或其調(diào)控網(wǎng)絡(luò)可能為克服耐藥、抑制轉(zhuǎn)移提供新策略。
筆者對(duì)FTO在肥胖相關(guān)腫瘤中的表達(dá)與調(diào)控機(jī)制及其臨床意義進(jìn)行了總結(jié),見表1。
4 討 論
綜上所述,F(xiàn)TO在子宮內(nèi)膜癌、結(jié)直腸癌、胰腺癌、乳腺癌等腫瘤中呈現(xiàn)上調(diào)趨勢(shì),而在甲狀腺癌中表現(xiàn)為下調(diào),在卵巢癌及肝癌中則雙向表達(dá),通過調(diào)控m6A修飾水平影響關(guān)鍵致癌基因的穩(wěn)定性及信號(hào)通路活性,進(jìn)而驅(qū)動(dòng)腫瘤細(xì)胞的代謝重編程、增殖、侵襲及化學(xué)治療耐藥。FTO能夠穩(wěn)定MYC、CDC25C等基因的mRNA,激活PI3K/AKT、Wnt等信號(hào)通路,促進(jìn)腫瘤細(xì)胞增殖和存活。同時(shí),F(xiàn)TO在肥胖相關(guān)腫瘤的代謝重編程、免疫調(diào)節(jié)與肥胖因子介導(dǎo)的信號(hào)軸中發(fā)揮多重交互調(diào)控作用,如通過調(diào)控HK2影響腫瘤代謝,通過調(diào)節(jié)PD-L1表達(dá)促進(jìn)免疫逃逸,且瘦素可上調(diào)FTO表達(dá),增強(qiáng)腫瘤細(xì)胞的增殖和侵襲能力。這些發(fā)現(xiàn)揭示了FTO在肥胖相關(guān)腫瘤中的促癌機(jī)制,凸顯了FTO在腫瘤進(jìn)程中的關(guān)鍵地位。
FTO作為潛在的治療靶點(diǎn)具有顯著優(yōu)勢(shì),其在多個(gè)腫瘤中的促癌作用為靶向治療提供了新方向。然而,F(xiàn)TO在不同組織背景下呈現(xiàn)促癌與抑癌的雙向調(diào)控效應(yīng),如在肝癌中既可促進(jìn)腫瘤進(jìn)展,也可通過調(diào)控特定基因抑制肝細(xì)胞過度增殖,這為靶向治療帶來了挑戰(zhàn)。此外,現(xiàn)有研究存在一些局限性,F(xiàn)TO對(duì)于肥胖相關(guān)腫瘤的調(diào)控是否具有特異性與選擇性仍缺乏相關(guān)研究。FTO對(duì)同一個(gè)腫瘤的不同細(xì)胞類型如卵巢癌、肝癌的調(diào)控,存在著明顯的差異,這表明FTO的功能具有高度動(dòng)態(tài)性與可塑性。FTO作為第一個(gè)被發(fā)現(xiàn)且與肥胖強(qiáng)相關(guān)的基因,對(duì)肥胖相關(guān)腫瘤代謝方面是否展現(xiàn)出顯著的代謝調(diào)控偏好性,上述代謝調(diào)控特性在非肥胖相關(guān)腫瘤中是否具有相似的特異性與選擇性,仍需要通過系統(tǒng)性比較FTO在肥胖與非肥胖相關(guān)腫瘤中的靶基因譜跨瘤種分析、微環(huán)境驅(qū)動(dòng)機(jī)制驗(yàn)證及普適性靶點(diǎn)篩選等研究進(jìn)一步闡明。
盡管如此,針對(duì)FTO的小分子抑制劑在肝細(xì)胞癌和胃癌的臨床前模型中已展現(xiàn)出良好的抗腫瘤效果,表明FTO可作為其潛在的治療靶點(diǎn)[32, 46]。FTO抑制劑的開發(fā)遵循了基于作用機(jī)制的理性設(shè)計(jì)策略,已發(fā)展出多種類型。底物競(jìng)爭(zhēng)性抑制劑直接靶向FTO的結(jié)合位點(diǎn),其代表包括首個(gè)被發(fā)現(xiàn)的天然產(chǎn)物抑制劑大黃酸,以及選擇性顯著優(yōu)于大黃酸、能更有效區(qū)分FTO與其同源酶ALKBH5的甲氯芬那酸(meclofenamic acid,MA)[47]。2-酮戊二酸(2-Ketoglutaric acid,2OG)競(jìng)爭(zhēng)性抑制劑則占據(jù)FTO催化所需的2OG輔因子結(jié)合位點(diǎn),以及還存在能同時(shí)阻斷底物和2OG結(jié)合位點(diǎn)的雙底物競(jìng)爭(zhēng)型抑制劑恩他卡朋[48]。新一代高選擇性抑制劑的出現(xiàn)如FB23-2,對(duì)包括激酶、蛋白酶及表觀遺傳調(diào)控蛋白等超過400種的致癌蛋白的FTO抑制展現(xiàn)出卓越的特異性,以及靶向腫瘤代謝通路的Dac51[49]。未來可以構(gòu)建人源化免疫模型或類器官以突破免疫缺陷小鼠無法模擬微環(huán)境的局限性,以及解析組織特異性靶點(diǎn)網(wǎng)絡(luò)并推動(dòng)藥效-毒性評(píng)估及早期臨床試驗(yàn),最終使患者受益。
5 結(jié)語(yǔ)與展望
FTO作為首種被確認(rèn)的肥胖易感基因,在肥胖相關(guān)腫瘤中扮演著復(fù)雜且關(guān)鍵的角色。其通過調(diào)控m6A修飾影響多種致癌通路、代謝重編程及免疫微環(huán)境,進(jìn)而促進(jìn)或抑制腫瘤的發(fā)生發(fā)展。不同癌種中FTO呈現(xiàn)組織特異性表達(dá)及功能差異,提示其具有高度的動(dòng)態(tài)調(diào)控性與治療靶點(diǎn)潛力。
盡管已有研究揭示FTO在多種肥胖相關(guān)腫瘤中的功能,但其組織特異性機(jī)制、細(xì)胞類型依賴性效應(yīng)以及與肥胖代謝軸的交互關(guān)系仍需進(jìn)一步探索。未來可著力于開發(fā)基于腫瘤分型的選擇性抑制劑以克服功能雙向性矛盾,并探索其與免疫療法、鐵死亡誘導(dǎo)劑的協(xié)同效應(yīng)。其次,還可以利用類器官模型及人源化小鼠驗(yàn)證體內(nèi)療效與安全性,結(jié)合多組學(xué)篩選肥胖特異性靶基因,解析FTO在能量代謝異常與腫瘤發(fā)生中的橋梁作用。深化FTO的臨床轉(zhuǎn)化研究,有望為突破肥胖相關(guān)腫瘤的治療瓶頸提供新策略。
利益沖突聲明:本研究未受到企業(yè)、公司等第三方資助,不存在潛在利益沖突。
參 考 文 獻(xiàn)
[1] 體重管理指導(dǎo)原則(2024年版)摘登[J].新醫(yī)學(xué), 2025, 56(6): 627-628.DOI: 10.12464/j.issn.0253-9802.2025-0165.
Excerpt of Guidelines for Weight Management (2024 Edition) [J]. J New Med, 2025, 56(6): 627-628.DOI: 10.12464/j.issn.
0253-9802.2025-0165.
[2] JASTREBOFF A M, KOTZ C M, KAHAN S, et al. Obesity as a disease: the obesity society 2018 position statement[J]. Obesity (Silver Spring), 2019, 27(1): 7-9. DOI: 10.1002/oby.22378.
[3] 趙琳琳, 崔曼, 李亞培, 等.中青年健康體檢人群肥胖與早發(fā)血管老化的相關(guān)性[J].中南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2024, 49(3): 408-416.DOI: 10.11817/j.issn.1672-7347.2024.230361.
ZHAO L L, CUI M, LI Y P, et al.Correlation between obesity and early vascular aging in middle-aged and young adult health check-up populations[J]. J Cent South Univ (Med Sci), 2024, 49(3): 408-416.DOI: 10.11817/j.issn.1672-7347.2024.230361.
[4] AVGERINOS K I, SPYROU N, MANTZOROS C S, et al. Obesity and cancer risk: emerging biological mechanisms and perspectives[J]. Metabolism, 2019, 92: 121-135. DOI: 10.
1016/j.metabol.2018.11.001.
[5] LAUBY-SECRETAN B, SCOCCIANTI C, LOOMIS D, et al. Body fatness and cancer: viewpoint of the IARC working group[J]. N Engl J Med, 2016, 375(8): 794-798. DOI: 10.1056/NEJMsr1606602.
[6] IYENGAR N M, GUCALP A, DANNENBERG A J, et al. Obesity and cancer mechanisms: tumor microenvironment and inflammation[J]. J Clin Oncol, 2016, 34(35): 4270-4276. DOI: 10.1200/JCO.2016.67.4283.
[7] FRAYLING T M, TIMPSON N J, WEEDON M N, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity[J]. Science, 2007, 316(5826): 889-894. DOI: 10.1126/science.
1141634.
[8] YIN D, LI Y, LIAO X, et al. FTO: a critical role in obesity and obesity-related diseases[J]. Br J Nutr, 2023, 130(10): 1657-1664. DOI: 10.1017/S0007114523000764.
[9] PERRY G S, DAS M, WOON E C Y. Inhibition of AlkB nucleic acid demethylases: promising new epigenetic targets[J]. J Med Chem, 2021, 64(23): 16974-17003. DOI: 10.1021/acs.jmedchem.1c01694.
[10] GERKEN T, GIRARD C A, TUNG Y L, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase[J]. Science, 2007, 318(5855): 1469-1472.
DOI: 10.1126/science.1151710.
[11] HAN Z, NIU T, CHANG J, et al. Crystal structure of the FTO protein reveals basis for its substrate specificity[J]. Nature, 2010, 464(7292): 1205-1209. DOI: 10.1038/nature08921.
[12] JIA G, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887. DOI: 10.1038/nchembio.
687.
[13] HUANG C, CHEN W, WANG X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases[J]. Genes Dis, 2022, 10(6): 2351-2365. DOI: 10.1016/j.gendis.2022.04.014.
[14] GULATI P, AVEZOV E, MA M, et al. Fat mass and obesity-related (FTO) shuttles between the nucleus and cytoplasm[J]. Biosci Rep, 2014, 34(5): e00144. DOI: 10.1042/BSR20140111.
[15] WEI J, LIU F, LU Z, et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm[J]. Mol Cell, 2018, 71(6): 973-985.e5. DOI: 10.1016/j.molcel.2018.08.011.
[16] ZHANG Z, GAO Q, WANG S. Kinase GSK3β functions as a suppressor in colorectal carcinoma through the FTO-mediated MZF1/c-Myc axis[J]. J Cell Mol Med, 2021, 25(5): 2655-2665. DOI: 10.1111/jcmm.16291.
[17] PHAN T, NGUYEN V H, SU R, et al. Targeting fat mass and obesity-associated protein mitigates human colorectal cancer growth in vitro and in a murine model[J]. Front Oncol, 2023, 13: 1087644. DOI: 10.3389/fonc.2023.1087644.
[18] ORTEGA M A, FRAILE-MARTíNEZ O, ASúNSOLO á, et al. Signal transduction pathways in breast cancer: the important role of PI3K/Akt/mTOR[J]. J Oncol, 2020, 2020: 9258396. DOI: 10.1155/2020/9258396.
[19] ZHANG Z, ZHOU D, LAI Y, et al. Estrogen induces endometrial cancer cell proliferation and invasion by regulating the fat mass and obesity-associated gene via PI3K/AKT and MAPK signaling pathways[J]. Cancer Lett, 2012, 319(1): 89-97. DOI: 10.1016/j.canlet.2011.12.033.
[20] ZHANG L, WAN Y, ZHANG Z, et al. FTO demethylates m6A modifications in HOXB13 mRNA and promotes endometrial cancer metastasis by activating the WNT signalling pathway[J]. RNA Biol, 2021, 18(9): 1265-1278. DOI: 10.1080/15476286.2020.1841458.
[21] FUKUMOTO T, ZHU H, NACARELLI T, et al. N6-methylation of adenosine of FZD10 mRNA contributes to PARP inhibitor resistance[J]. Cancer Res, 2019, 79(11): 2812-2820. DOI: 10.1158/0008-5472.CAN-18-3592.
[22] YANG X, SHAO F, GUO D, et al. WNT/β-catenin-suppressed FTO expression increases m6A of c-Myc mRNA to promote tumor cell glycolysis and tumorigenesis[J]. Cell Death Dis, 2021,
12(5): 462. DOI: 10.1038/s41419-021-03739-z.
[23] WEI M, BAI J W, NIU L, et al. The complex roles and therapeutic implications of m6A modifications in breast cancer[J].
Front Cell Dev Biol, 2021, 8: 615071. DOI: 10.3389/fcell.
2020.615071.
[24] WANG S, ZHANG X, CHEN Q, et al. FTO activates PD-L1 promotes immunosuppression in breast cancer via the m6A/YTHDF3/PDK1 axis under hypoxic conditions[J]. J Adv Res, 2024: S2090-1232(24)00604-0. DOI: 10.1016/j.jare.
2024.12.026.
[25] YE M, CHEN J, LU F, et al. Down-regulated FTO and ALKBH5 co-operatively activates FOXO signaling through m6A methylation modification in HK2 mRNA mediated by IGF2BP2 to enhance glycolysis in colorectal cancer[J]. Cell Biosci, 2023, 13(1): 148. DOI: 10.1186/s13578-023-01100-9.
[26] JOHNSON D E, O’KEEFE R A, GRANDIS J R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer[J]. Nat Rev Clin Oncol, 2018, 15(4): 234-248. DOI: 10.1038/nrclinonc.
2018.8.
[27] ZHU Y, SHEN J, GAO L, et al. Estrogen promotes fat mass and obesity-associated protein nuclear localization and enhances endometrial cancer cell proliferation via the mTOR signaling pathway[J]. Oncol Rep, 2016, 35(4): 2391-2397. DOI: 10.3892/or.2016.4613.
[28] HUANG H, WANG Y, KANDPAL M, et al. FTO-dependent N 6-methyladenosine modifications inhibit ovarian cancer stem cell self-renewal by blocking cAMP signaling[J]. Cancer Res, 2020, 80(16): 3200-3214. DOI: 10.1158/0008-5472.CAN-19-4044.
[29] ZHANG F, ZHU T, GAN L, et al. FTO triggers NLRP3/GSDMD-dependent pyroptosis to enhance cisplatin-sensitivity in ovarian cancer[J]. Cell Signal, 2025, 131: 111698. DOI: 10.1016/j.cellsig.2025.111698.
[30] ZHAO L, KONG X, ZHONG W, et al. FTO accelerates ovarian cancer cell growth by promoting proliferation, inhibiting apoptosis, and activating autophagy[J]. Pathol Res Pract, 2020, 216(9): 153042. DOI: 10.1016/j.prp.2020.153042.
[31] CHEN A, ZHANG V X, ZHANG Q, et al. Targeting the oncogenic m6A demethylase FTO suppresses tumourigenesis and potentiates immune response in hepatocellular carcinoma[J]. Gut, 2024, 74(1): 90-102. DOI: 10.1136/gutjnl-2024-331903.
[32] JIANG L, LIANG R, LUO Q, et al. Targeting FTO suppresses hepatocellular carcinoma by inhibiting ERBB3 and TUBB4A expression[J]. Biochem Pharmacol, 2024, 226: 116375. DOI: 10.1016/j.bcp.2024.116375.
[33] MITTENBüHLER M J, SAEDLER K, NOLTE H, et al. Hepatic FTO is dispensable for the regulation of metabolism but counteracts HCC development in vivo[J]. Mol Metab, 2020, 42: 101085. DOI: 10.1016/j.molmet.2020.101085.
[34] QIAO Y, SU M, ZHAO H, et al. Targeting FTO induces colorectal cancer ferroptotic cell death by decreasing SLC7A11/GPX4 expression[J]. J Exp Clin Cancer Res, 2024, 43(1): 108. DOI: 10.1186/s13046-024-03032-9.
[35] XU C, SHEN T, FENG L, et al. FTO facilitates colorectal cancer chemoresistance via regulation of NUPR1-dependent iron homeostasis [J]. Redox Biol, 2025, 83: 103647. DOI: 10.1016/
j.redox.2025.103647.
[36] WANG W, HE Y, ZHAI L L, et al. m6A RNA demethylase FTO promotes the growth, migration and invasion of pancreatic cancer cells through inhibiting TFPI-2[J]. Epigenetics, 2022, 17(12): 1738-1752. DOI: 10.1080/15592294.2022.2061117.
[37] ZHAO L, CHEN G, LI D, et al. Baicalein disrupts TGF-β-induced EMT in pancreatic cancer by FTO-dependent m6A demethylation of ZEB1[J]. Biochim Biophys Acta Mol Cell Res, 2025, 1872(5): 119969. DOI: 10.1016/j.bbamcr.2025.119969.
[38] LU J, YANG Y, LIU X, et al. FTO-mediated LINC01134 stabilization to promote chemoresistance through miR-140-3p/WNT5A/WNT pathway in PDAC[J]. Cell Death Dis, 2023,
14(11): 713. DOI: 10.1038/s41419-023-06244-7.
[39] TIAN R, ZHANG S, SUN D, et al. M6A demethylase FTO plays a tumor suppressor role in thyroid cancer[J]. DNA Cell Biol, 2020. DOI: 10.1089/dna.2020.5956.
[40] CHEN Z, ZHONG X, XIA M, et al. FTO/IGF2BP2-mediated N6 methyladenosine modification in invasion and metastasis of thyroid carcinoma via CDH12[J]. Cell Death Dis, 2024,
15(10): 733. DOI: 10.1038/s41419-024-07097-4.
[41] 田宏友, 程璐, 任艷, 等. m6A甲基化修飾在甲狀腺癌發(fā)生發(fā)展中的作用研究進(jìn)展[J]. 中國(guó)普通外科雜志, 2024, 33(11): 1883-1889. DOI: 10.7659/j.issn.1005-6947.2024.11.015.
TIAN H Y, CHENG L, REN Y, et al. Research progress on the role of m6A methylation modification in the occurrence and development of thyroid cancer [J]. Chin J Gen Surg, 2024,
33(11): 1883-1889.DOI: 10.7659/j.issn.1005-6947.2024.11.015.
[42] 譚愛花. FTO在人乳腺癌中的表達(dá)及其對(duì)乳腺癌細(xì)胞增殖、遷移和侵襲力的影響[D]. 南寧: 廣西醫(yī)科大學(xué), 2016.
TAN A H. Expression of FTO in human breast cancer and its effect on proliferation, migration and invasion of breast cancer cells [D]. Nanning: Guangxi Medical University, 2016.
[43] 紀(jì)琳娣, 徐婷娟, 殷梧, 等. m6A去甲基酶FTO促進(jìn)HER2陽(yáng)性乳腺癌細(xì)胞對(duì)曲妥珠單抗耐藥[J]. 安徽醫(yī)科大學(xué)學(xué)報(bào), 2021, 56(12): 1885-1890.DOI: 10.19405/j.cnki.issn1000-1492.2021.12.008.
JI L D, XU T J, YIN W, et al. m6A Demethylase FTO promotes trastuzumab resistance in HER2-positive breast cancer cells [J].
J Anhui Med Univ, 2021, 56 (12): 1885-1890.DOI: 10.19405/
j.cnki.issn1000-1492.2021.12.008.
[44] MI J, ZHANG H, CAO W, et al. FTO, PIK3CB serve as potential markers to complement CEA and CA15-3 for the diagnosis of breast cancer[J]. Medicine (Baltimore), 2023, 102(42): e35361. DOI: 10.1097/MD.0000000000035361.
[45] QIN Y, ZENG H, DONG Z, et al. FTO promotes breast cancer development via inhibiting CYP27B1/1, 25-dihydroxyvitamin D3 asis in m6A-dependent manner[J]. Int J Biol Macromol, 2025, 319(Pt 3): 145464. DOI: 10.1016/j.ijbiomac.2025.145464.
[46] JIN G, SONG Y, FANG S, et al. hnRNPU-mediated pathogenic alternative splicing drives gastric cancer progression[J]. J Exp Clin Cancer Res, 2025, 44(1): 8. DOI: 10.1186/s13046-024-03264-9.
[47] HUANG Y, XIA W, DONG Z, et al. Chemical inhibitors targeting the oncogenic m6A modifying proteins[J]. Acc Chem Res, 2023, 56(21): 3010-3022. DOI: 10.1021/acs.accounts.3c00451.
[48] PRAKASH M, ITOH Y, FUJIWARA Y, et al. Identification of potent and selective inhibitors of fat mass obesity-associated protein using a fragment-merging approach[J]. J Med Chem, 2021, 64(21): 15810-15824. DOI: 10.1021/acs.jmedchem.
1c01107.
[49] LIU Z, DUAN Z, ZHANG D, et al. Structure-activity relationships and antileukemia effects of the tricyclic benzoic acid FTO inhibitors[J]. J Med Chem, 2022, 65(15): 10638-10654. DOI: 10.1021/acs.jmedchem.2c00848.
(責(zé)任編輯:鄭巧蘭)