在傳統的小學中年級數學應用題教學過程中,一些教師通常會使用抽象的定義、概念或推理,來培養學生的抽象邏輯思維能力。雖然這種教學方法突出和強調了左腦的抽象邏輯思維能力的運用、訓練和培養,但是卻忽視了右腦的形象思維的巨大能量和潛力。其結果是:學生往往會卡在數學應用題的難關上,學習成績得也盡不如人意。
在小學中年級階段,數學應用題的教學是為了讓學生充分理解數學知識與生活的經驗,現實事物和其他學科之間的聯系,體會數學的價值意義,但對于學生來說應用題仍然是令人頭痛的題目。為什么會出現這樣的現象呢?作為數學教師,該如何幫助學生輕松解答應用題呢?
一、遵循學生的認知發展規律
作為一名優秀的數學教師應當充分了解到學生的認知發展規律,并通過這樣的規律來幫助學生理解知識、運用知識,并且開拓學生的思維能力。對于小學中年級的學生而言,他們的認知水平及思維特點正從具體的形象思維走向抽象的邏輯思維,因此,教師應善于結合多媒體、圖片、游戲活動等方式,將抽象的、復雜的應用題化為學生熟悉并且容易理解的形象化材料。
小學中年級的學生在理解知識的能力上已經逐漸形成解題的思維。低年級的數學應用題多為圖表式,形象而直觀,易于學生解題;而中年級的應用題,根據學生的接受能力已經改為文字表述題。因此,在教學當中應引導學生,對較為簡單的應用題,可直接通過列出數量關系解答,而難度較大的問題,可以通過畫圖或列表,將問題變得形象而直觀,從而幫助自己更加清楚地認識問題,理清思路。
例如,某商店7月2日到8日這一個星期售出飲料情況如下表:
(1) 一個星期共售出飲料多少箱?
(2)平均每天售出多少箱?
這個題目中問題的難度雖然是逐步遞升的,但只需要列出相應的數量關系即可解答。在第一個問題中,求一個星期總共售出的箱數,即只需要將每天售出的數量相加即可,28+14+16+18+17+22+25=140(箱)。而第二個問題,只需要將一個星期共售出去的箱數除以7即可,140/7=20(箱)。
又如,副食品店運來3箱色拉油共重150千克,第一箱里有2桶油,第二箱里比第一箱里多3桶油,第三箱里比第二箱里少2桶油,平均每桶重多少千克?
對于小學中年級的學生而言存在一定難度的應用題,則需要借助畫圖來幫助解題。在解答這道應用題時,學生可以在草稿紙上畫圖來幫助分析,先畫出三個箱子,然后根據題目畫出各個箱子里的油桶數。通過直觀形象的畫圖,來更好地理清思路,不會因為題目信息量大而搞不清方向。
二、總結有效的應用題解題方法
授之以魚不如授之以漁。在傳統的應用題教學中,很多教師會實行題海戰術,讓學生做大量的練習題,這不但加重了學生的學習壓力,同時收到的效果也是事倍功半的。要提高學生對數學應用題的解題能力,教師就要善于總結做題規律與技巧,讓學生學會舉一反三,融會貫通。
例如學生在做應用題時經常遇到的種樹、爬樓梯,計算時間等問題,這些都需要具備日常生產、生活的基本知識。具體地說,像植樹問題,假設要在道路的兩旁種樹,開始的地方應先種一棵,所以需加1;最后的得數乘2,才能得到道路兩旁的總的種樹量。但是在計算樓梯臺階時,因為一層沒樓梯,所以需減1。計算時間的時候,則要求學生知道鐘表上秒、分、小時的推算;計算月、日時則需記住公歷中的1、3、5、7、8、10、12這七個大月每月為31天,4、6、9、11這四個小月每月為30天,2月為28天(年份被4整除時為29天);計算星期幾時,需將天數÷7,余數與原星期數相加,若得數大于7時則需減7,所得之數就是所求的星期幾。
例如,如果2006年12月1日是星期五,那么2008年的3月1日是星期幾?
A.四;B.五;C.六;D.日。
解:(365+31+31+29)÷7=65…1,則5+1=6。因此選C。
綜上所述,在小學中年級應用題教學中,要訓練學生的邏輯思維能力,必須有針對性地結合小學中年級學生的心理特征、思維特點和認知規律,通過種種方式和手段,為學生提供更多的可感知的學習材料,幫助學生將抽象的數學問題變得直觀、具體,將復雜的數學邏輯關系簡捷、形象地描述出來。
(責編 金 鈴)