岳本營

【摘要】 簡介新課程標準背景下的初中數學教材中學習內容的呈現形式,結合初中數學“一元二次方程”和“二次函數”的教學談建模思想的培養. 讓學生經歷探究數學模型的全過程. 讓學生體驗到必要的數學建模方法,加強數學模型思想的滲透,培養分析和解決實際問題的能力.
【關鍵詞】 新課程標準;數學建模思想;建模過程;建模方法
眾所周知,數學建模在中學數學教學中有著非同尋常的地位和作用. 而新課程標準背景下的初中數學教材向學生提供了大量現實的、有趣的、富有挑戰性的學習內容,這些內容的呈現主要以“問題情境—建立數學模型—解釋、應用與拓展”的基本形式展開,即從具體的問題情境中抽象出數學問題,使用數學語言表述問題,并建立數學模型,然后用相關的數學方法解決數學問題,最后獲得對實際問題的合理解答. 這樣一個將數學知識應用于實際問題的過程,就是數學建模的過程. 作為初中數學教學來講,這個過程應得到高度重視. 而模型思想在初中階段的數學學習中多以實際問題轉化為方程或二次函數來加以解決,下面就結合初中數學“一元二次方程”和“二次函數”的教學談一下建模思想的培養.
一、讓學生經歷探究數學模型的全過程
新課程標準下的教材都是以“問題情境—建立模型—解釋、應用與拓展”為基本敘述方式,因此,在教學中應盡可能地運用或改良教材中的問題.通過教師的適度啟發,讓學生自己去研究、探索、經歷數學建模的全過程,從而使學生體會到方程、不等式、函數等都是刻畫現實世界的有效數學模型,初步領會數學建模的思想和方法,提高數學的應用意識和應用數學知識解決實際問題的能力. 下面以“一元二次方程”中的一個“建草坪” 問題為例簡要說明.
原題如下:某住宅小區內有一棟建筑,占地為一邊長為35 m的正方形.現打算拆除建筑并在其正中間鋪上一面積為900 m2的正方形草坪,使四周留出的人行道的寬度相等,問人行道的寬度為多少米.
解:如圖所示,設人行道的寬度為x m,則草坪的邊長為(35 - 2x)m.根據題意,可以列方程:(35 - 2x)2 = 900.解這個方程得:x1 = 2.5,x2 = 32.5.根據修建草坪面積的要求和人行道寬度的實際意義分析,x2 = 32.5不合題意,應舍去. 所以人行道的寬度應為2.5 m.
在以上分析解決這個數學問題的過程中,首先要引導學生知道誰是模型、是誰的模型、屬于哪類模型. 該問題的實際數量關系“某棟建筑所占地是邊長35 m的正方形,四周留出一樣寬的人行道之后,中間的正方形草坪面積是900 m2”是問題的原型,而模擬該實際數量關系的一元二次方程(35 - 2x)2 = 900是該原型的模型.
其次,要讓學生體會建立數學模型的基本過程. 對“建草坪”這個問題而言,建模的基本過程是:第一步進行數學抽象,挑出問題中的數量要素,淘汰無關內容;第二步找數量關系,本題是找出所得各數量要素之間的等量關系;第三步找數學模型,本題是結合正方形的面積找到合理的方程模型,用它來表述所得等量關系——這就建立了數學模型;第四步解模,解方程得結果,對照原型問題進行檢驗,得出最終結果. 二、讓學生體驗到數學建模的方法
數學建模是為了解決實際問題,但對于初中生來說,進行數學建模教學的主要目的并不是要他們去解決復雜的實際問題,而是要培養他們的數學應用意識,初步掌握數學建模的方法,為將來的學習打下堅實的基礎. 因此在教學時教師可以通過教材中一些不太復雜但有意義的應用問題,帶著學生一起來體會數學化的過程,從中給學生體驗一些數學建模的方法. 下面通過“二次函數”中一個“利潤最大值”問題加以說明.
原題為:某商店經營T 恤衫,已知成批進時單價是2.5元. 根據市場調查,銷售量與銷售單價滿足如下關系:在一段時間內,單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售出200件. 請你幫助分析,銷售單價是多少時,可以獲利最多?
在上述問題的實際教學過程中,數學建模的基本方法和過程如下:
1. 將實際問題抽象出數學模型
設銷售單價為x(2.5 < x ≤ 13.5)元,利潤為y元,則銷售量為[200(13.5 - x) + 500]件,考慮到利潤 = 銷售總額 - 進貨總額,故有
y = (x - 2.5)[200(13.5 - x) + 500]
= -200x2 + 3700x - 8000. (2.5 < x ≤ 13.5)
這樣原問題即轉化為二次函數的數學模型.
2. 此時問題變為求二次函數的最大值問題
將二次函數式配方后為y = -200(x - 9.25)2 + 9112.5 (2.5 < x ≤ 13.5).
由二次函數知識得:當x = 9.25 時,y最大 = 9112.5.故當銷售單價為9.25元時,最大利潤為9112.5 元.
在上述問題的解決過程中,要力求讓學生體會并總結出數學建模的一般方法,即:
(1)讀懂題意. 面對由實際問題所呈現的材料,要讀懂其中所敘述的實際問題的意義,判斷該實際問題要解決什么,以及涉及哪些相關的知識領域.
(2)理解轉換. 理解各種量之間的數量關系或位置關系,抓住關鍵,舍去非本質因素,挖掘隱含條件,將實際問題轉換成相應的數學問題.
(3)函數建模. 通過數學符號化,即利用已知量的代入、未知量的設定、數量關系的溝通,建立與實際問題相對應的二次函數模型.
(4)實施解模. 用已有的數學知識和解題經驗對所建立的二次函數模型求解,并根據實際問題的約束條件設計合理的運算途徑,得到初步的數學結果.
(5)檢驗結果. 對所求出的數學結果進行解釋與檢驗,或取或舍或修正,使其符合實際問題的要求.
總之,數學建模可以幫助學生準確、清晰地認識、理解數學的意義,并為解決現實問題提供了重要的思想方法. 在當前的初中教學中,教師應加強數學模型思想的滲透,在創設情境中感知數學建模思想,讓學生在參與探究中主動建構數學模型,從而提高學生的學習興趣,培養學生應用數學的意識和能力.