馬春艷
摘 要:數列求和是高中數學知識中的重點和難點,它在高考中出現的頻率高,題型多種多樣,考查方式靈活。將數列求和的方法進行總結和歸納能夠幫助學生找到其中的解題規律,提高該類型題的成功率。
關鍵詞:高中數學;數列求和;方法;歸納
求數列的前n項和是數列題中的高頻考點。它的考查十分靈活,題型變化多樣,有以選擇題的方式出現,有的則是填空題,甚至還會以一道綜合大題的方式進行考查。本文通過用列舉典型題的方式,總結歸納了6種常見的數列求和方法,供大家參考。
一、倒序相加法
如果一個數列{an},與首末項等距的兩項之和等于首末兩項之和,可采用把正著寫與倒著寫的兩個和式相加,就得到一個常數列的和,這一求和方法稱為倒序相加法。倒序相加法是數列求和當中應用最廣的一種解題方法,它的基本類型可以用公式表示為:a1+an=a2+an-1=a3+an-2=a4+an-3…具體解法見下面的例題。
二、用公式法
三、裂項相消法
裂項相消法是數列求和中比較難的一類題型,因為它不好看出數列之間的規律。如果裂項不對,也不能將問題解出。裂項相消法的解題原理是:將數列的一項拆成兩項或多項,使得前后項相抵消,留下有限項,從而求出數列的前n項和。
四、錯位相減法
五、疊加法
六、分組求和法
分組求和法就是對一類既不是等差數列,也不是等比數列的數列,若將這類數列適當拆開,可分為幾個等差、等比或常見的數列,然后分別求和,最后將其合并的方法。記住了這一類題型的特點,就能準確找到解題思路。
總之,數列求和以其靈活多變的出題方式和較高的錯題率成為高中數學中的難點。這類題雖然難,但也并不是無規律可循的。萬變不離其宗,教師在講課當中應該幫助學生多多總結歸納相關的解題技巧和解題方法,并配合適當的試題訓練;學生自身也要多思考,可以準備一個錯題記錄本時常翻看,有助于將這類問題消化吸收,最終將其完全掌握。