董昌州 張玉平
【摘 要】本文以函數(shù)的最值一節(jié)為例,將翻轉(zhuǎn)課堂的教學理念和模式應用到高等數(shù)學的課堂教學中,從而最大限度地調(diào)動學生學習的積極性,培養(yǎng)學生的創(chuàng)新能力。
【關鍵詞】高等數(shù)學;最值;翻轉(zhuǎn)課堂
翻轉(zhuǎn)課堂起源于美國科羅拉多州落基山“林地公園”高中的喬納森·伯爾曼和亞綸·薩姆斯這兩位化學老師,他們將結(jié)合實時講解和PPT演示的視頻上傳到網(wǎng)絡而引起眾人關注[1]。2011年,薩爾曼·可汗在《用視頻重新創(chuàng)造教育》演講中提到:現(xiàn)階段很多的學生都在家觀看可汗學院的教學視頻然后回到課堂上做作業(yè),遇到不懂的問題向老師和學生請教,很顯然這與我們傳統(tǒng)的教學模式正好相反,我們將這種教學形式稱之為“翻轉(zhuǎn)課堂”。自此,翻轉(zhuǎn)課堂成為教育者關注的熱點,迅速躥紅美國,并影響全球,成為全世界最熱門的教育改革和教育創(chuàng)新話題。被比爾·蓋茨認為“預見了教育的未來”,被加拿大《環(huán)球郵報》評為2011年影響課堂教學的重大技術變革。
翻轉(zhuǎn)課堂利用信息技術手段顛覆了傳統(tǒng)的教學順序和師生關系,讓學生成為課堂的主人,實現(xiàn)了課堂內(nèi)外一體化,教與學相互輔助,師生相互對話進行教學。下面以高等數(shù)學中函數(shù)的最值一節(jié)為例,論述了如何將翻轉(zhuǎn)課堂的教學理念融入到課堂教學中。
1 課前準備階段
1.1 教師活動
第一,明確教學目標,本節(jié)課我們的教學內(nèi)容是導數(shù)應用中最值一節(jié),最值是高中階段學生就學習過的知識,在這里重點是讓學生掌握最值的一般求法,以及利用最值理論解決簡單的實際問題。
第二,錄制教學視頻,視頻要求短小精悍,時長不超過15分鐘。其中重點講解最值的求法這一部分,包括最值的概念,最值和極值的區(qū)別以及聯(lián)系等等,這些基本概念學生可結(jié)合中學階段所學自行完成。
1.2 學生活動
觀看教學視頻,在觀看教學視頻的過程中,學生遇到不懂的地方可以做筆記,把自己不懂的問題帶到課堂,這樣學生可以完全掌控自己學習的步調(diào)。
2 課中教學活動階段
2.1 完成作業(yè),檢驗效果
針對最值這節(jié)需要掌握的基本概念和方法提出問題,讓學生獨立完成,檢驗課前的學習效果。
問題一:最值和極值的區(qū)別?
問題二:最值和極值的聯(lián)系?
問題三:閉區(qū)間上連續(xù)函數(shù)最值的求法和一般步驟?
問題四:任意區(qū)間上函數(shù)最值求法的特殊結(jié)論?
學生知識結(jié)構(gòu)的內(nèi)化需要經(jīng)過學生獨立的思考,而教師只能從方法上引導學生,而不能代替學生完成學習。通過以上問題,與學生一起總結(jié)出本節(jié)課重點:
(一)最值是整體概念,而極值是局部概念,極值是局部范圍的最值,在整個范圍上是最值的話,從局部范圍看,也一定是最值。所以說極值點一定是可疑的最值點,而最值點也可能在區(qū)間端點取到。
(二)閉區(qū)間上連續(xù)函數(shù)求最值的一般步驟:第一,明確函數(shù)定義域;第二,找可疑最值點,主要是找駐點和不可導點,駐點不可導點又可通過導數(shù)找,所以先求導數(shù),導數(shù)為0的點是駐點,而使它沒有意義的點通常為不可導點,明確區(qū)間端點;第三,計算可疑最值點處的函數(shù)值,比較得到最值。
(三)特殊結(jié)論:定義在任意區(qū)間上的函數(shù)如果在區(qū)間內(nèi)部可導,并且有唯一駐點,此時如果能夠判斷出駐點是極值點的話,它就一定是最值點。
2.2 合作交流,深度內(nèi)化。
提出具體案例,讓學生進行分組討論。
案例[2]:證明折射定律:根據(jù)物理學的費馬原理,光線沿著所需時間為最少的路徑傳播。今有兩種介質(zhì)Ⅰ,Ⅱ,以L為分界線。光線在介質(zhì)Ⅰ與介質(zhì)Ⅱ中的傳播速度分別為v1與v2,驗證光線由介質(zhì)Ⅰ中的點 A行進到介質(zhì)Ⅱ中的B點用時最少的路徑滿足■=■,其中?琢、?茁分別表示入射角和折射角。
利用最值原理,建立數(shù)學模型,進行求解。通過此環(huán)節(jié)充分調(diào)動學生學習數(shù)學的主動性,改變學生拙于交流和表達自己的思想、疏于與人合作的現(xiàn)象,培養(yǎng)學生的創(chuàng)新能力,促進學生的創(chuàng)造性思維,提高學生的創(chuàng)新意識。翻轉(zhuǎn)課堂最大的特點之一在于創(chuàng)設了對話式的教學環(huán)境和教學平臺,運用對話式教學方法。只有師生之間不斷通過對話合作探究才可能推動課堂教學情境的發(fā)展,教師既要有強烈的傾聽意識,又要能夠巧妙地引導學生主動發(fā)言展示成果或者提出自己的見解和看法,讓其他同學提問、爭論解答疑惑或者組織小組討論,在小組討論的基礎上再進行集體討論,鼓勵學生大膽發(fā)言、自由爭辯,在爭辯中產(chǎn)生思想的碰撞,在思想的交流和碰撞中解決問題,建構(gòu)知識。
3 課后總結(jié)階段
首先由幾個小組的學生代表總結(jié)本次課程的收獲及已解決的疑難點[3]。教師針對各個小組出現(xiàn)的問題將重點問題與重點知識集中講授,對整節(jié)課的知識進行系統(tǒng)化梳理,引起學生注意,并對課程學習過程進行總結(jié)。
折射定律這個案例使同學們體會到了最值理論在光學上的應用,事實上,最值理論的應用非常廣泛:
案例1:在兩種地質(zhì)層中鋪設煤氣管道,由于不同地質(zhì)層每千米的鋪設費用不同,請尋找費用最省的鋪設方案。
案例2:我們在超市中經(jīng)常見到這樣的罐裝飲料,很多都使用的是圓柱形金屬罐,商家為了減少成本的投入,一定要考慮,當圓柱形罐的容積一定時,怎樣設計才能使所用的材料最省呢?
對于這兩個小例子,每個討論小組任選其一,通過建立數(shù)學模型,利用我們這節(jié)課學習的最值理論找到解決的方案。在教學中我們經(jīng)常遇到學生反映,數(shù)學太枯燥了,學數(shù)學有什么用呢?通過最值理論在不同方面的應用,縮短了數(shù)學與專業(yè)的距離,數(shù)學與生活的距離,努力將學生感興趣的話題或者時下熱點問題融入到課堂教學中,消除學生對數(shù)學的神秘感和恐懼感。
翻轉(zhuǎn)課堂的教學理念是以學生為中心,學生是課堂的主人,把傳統(tǒng)的“課堂講解+課后鞏固練習”教學模式轉(zhuǎn)向“課前自主學習+課堂深度互動”的新模式,發(fā)揮學生的積極性,鍛煉他們的表達能力,使學生感受到數(shù)學應用之所在,從而提高對所學知識的理解和掌握,最終達到培養(yǎng)創(chuàng)新型人才的目的。
【參考文獻】
[1]陳怡,趙呈領.基于翻轉(zhuǎn)課堂模式的教學設計及應用研究[J].現(xiàn)代教育技術,2014,24(2).
[2]同濟大學數(shù)學系,高等數(shù)學(下)[M].第六版,北京:高等教育出版社,2007.
[3]路麗娜.“翻轉(zhuǎn)課堂”:傳統(tǒng)課堂面臨的挑戰(zhàn)及變革路徑[J].大學教育科學,2014,6(6).
[責任編輯:王楠]