孟柳, 章回炫,2, 范濤,2
(1.中國(guó)科學(xué)院 電工研究所, 北京 100190; 2.中國(guó)科學(xué)院大學(xué), 北京 100049)
永磁同步電機(jī)因其高功率密度、高效率、高可靠性和寬調(diào)速范圍等優(yōu)點(diǎn),已經(jīng)廣泛應(yīng)用于伺服系統(tǒng)、航空航天及電動(dòng)汽車(chē)等領(lǐng)域。工程中常用的控制方法是基于數(shù)字PI控制器的雙閉環(huán)矢量控制系統(tǒng),其中電流環(huán)作為控制系統(tǒng)的最內(nèi)環(huán)是整個(gè)控制系統(tǒng)的基礎(chǔ)。
一般情況下,控制系統(tǒng)在匹配新的電機(jī)平臺(tái)時(shí)需要進(jìn)行控制器參數(shù)的調(diào)節(jié),使電機(jī)平臺(tái)能夠順利啟動(dòng)并初步達(dá)到穩(wěn)定運(yùn)行的能力,在此基礎(chǔ)上再進(jìn)行后續(xù)功能的開(kāi)發(fā)及優(yōu)化。此過(guò)程可以稱之為控制系統(tǒng)的初始化過(guò)程,通常情況下該項(xiàng)工作需要有經(jīng)驗(yàn)的工程師進(jìn)行人工調(diào)節(jié),尤其是當(dāng)電機(jī)參數(shù)未知時(shí),該過(guò)程可能需要工程師花費(fèi)更多的時(shí)間和精力。
由于電流環(huán)控制器的控制參數(shù)主要依賴于電機(jī)參數(shù),辨識(shí)出電機(jī)參數(shù)后結(jié)合電流環(huán)控制器參數(shù)整定方法可以實(shí)現(xiàn)控制器參數(shù)的自動(dòng)整定。由此不僅可以節(jié)省控制系統(tǒng)的初始化時(shí)間,還能使控制系統(tǒng)在匹配不同電機(jī)平臺(tái)時(shí)都能具有良好的控制性能[1-4]。因此對(duì)電機(jī)進(jìn)行初始參數(shù)辨識(shí)顯得尤為重要。
電流環(huán)設(shè)計(jì)用到的主要電機(jī)參數(shù)包括定子電阻和交直軸電感。定子電阻的傳統(tǒng)測(cè)量方法包括交流靜態(tài)法、直流暫態(tài)法、直接負(fù)載法等,這些方法通常需要借助電橋等外部?jī)x器或電路進(jìn)行人工電阻測(cè)量[5-6],同時(shí)對(duì)實(shí)驗(yàn)人員也有一定要求,不利于提高系統(tǒng)的通用性及辨識(shí)效率。與此相比采用伏安法辨識(shí)電阻的實(shí)現(xiàn)過(guò)程較為簡(jiǎn)單方便,只需向轉(zhuǎn)子方向注入一定幅值的電壓,等待電流穩(wěn)定后即可計(jì)算出定子電阻值[7]。但由于注入的電壓值較小,受死區(qū)影響較大,因此本文采用兩點(diǎn)式伏安法辨識(shí)電阻消除了死區(qū)帶來(lái)的影響,提高了辨識(shí)精度[8-9]。
交直軸電感辨識(shí)常用的方法是電壓階躍響應(yīng)法及高頻注入法,其中電壓階躍響應(yīng)法需要分別向交直軸方向注入恒定的電壓,檢測(cè)電流上升過(guò)程,此方法在辨識(shí)過(guò)程中可能會(huì)引起電機(jī)轉(zhuǎn)動(dòng),且電感的辨識(shí)結(jié)果受電阻值影響會(huì)將電阻辨識(shí)結(jié)果中的誤差帶入電感值中[10-12]。本文采用的高頻注入法由于注入的電壓信號(hào)頻率較高,且其電壓平均值為0 V,不會(huì)引起轉(zhuǎn)子轉(zhuǎn)動(dòng),結(jié)合離散傅里葉變換檢測(cè)電流幅值來(lái)計(jì)算電感值,使辨識(shí)算法較為簡(jiǎn)單易于實(shí)現(xiàn)[8,13-14]。
對(duì)于電流環(huán)控制器參數(shù)整定的方法,本文闡述了基于電流環(huán)零極點(diǎn)相消的控制器參數(shù)整定方法[15-18]。該方法在獲得電機(jī)參數(shù)后,結(jié)合設(shè)定的期望開(kāi)環(huán)截止頻率即可實(shí)現(xiàn)控制器參數(shù)的自動(dòng)整定。最后,通過(guò)實(shí)驗(yàn)驗(yàn)證了本文方法的有效性及通用性。
對(duì)永磁同步電機(jī)定子電阻辨識(shí)采用的是兩點(diǎn)式伏安法。電機(jī)的直軸電壓方程為
(1)
式中:Ud為直軸d電壓幅值;R為定子電阻;id、iq分別為直軸d、交軸q的電流幅值;Ld、Lq分別為直軸、交軸電感值;ωe為同步角速度。
采用伏安法辨識(shí)電阻時(shí),是對(duì)永磁同步電機(jī)的三相繞組施加一個(gè)較低的直流脈沖電壓,當(dāng)注入電壓方向與電機(jī)直軸方向相同時(shí),電機(jī)中不會(huì)產(chǎn)生旋轉(zhuǎn)磁場(chǎng),轉(zhuǎn)子不會(huì)發(fā)生轉(zhuǎn)動(dòng),也不會(huì)產(chǎn)生反電動(dòng)勢(shì),此時(shí)的直軸電壓方程可以表示為
(2)
受系統(tǒng)中電感的作用三相電流會(huì)經(jīng)過(guò)一段時(shí)間后達(dá)到一個(gè)穩(wěn)定值,當(dāng)響應(yīng)電流穩(wěn)定后,根據(jù)指令電壓值和響應(yīng)電流值可以得到電阻的辨識(shí)值。
圖1所示為靜止參數(shù)辨識(shí)原理框圖,其中虛線區(qū)域?yàn)槎ㄗ与娮璞孀R(shí)部分。圖1中,Uq為交軸電壓幅值;dq表示兩相旋轉(zhuǎn)坐標(biāo)系;αβ表示兩相靜止坐標(biāo)系;SVPWM表示空間矢量脈寬調(diào)制;abc表示三相靜止坐標(biāo)系;ia、ib、ic為三相交流電流幅值。
實(shí)驗(yàn)中給定一個(gè)恒定的直流電壓UDC,令Ud=UDC,等待電流穩(wěn)定后記錄響應(yīng)電流穩(wěn)態(tài)值idf,由此定子電阻可以表示為
(3)
由于逆變器無(wú)法提供恒定的直流電壓,實(shí)際是通過(guò)給定恒定占空比對(duì)母線電壓進(jìn)行高頻斬波獲得的等效直流電壓。永磁同步電機(jī)定子電阻一般較小,為了避免產(chǎn)生過(guò)大電流,通常所需的直流電壓值較小,而直流母線電壓較高,脈沖寬度調(diào)制(PWM)信號(hào)的占空比很小,此時(shí)由于死區(qū)時(shí)間帶來(lái)的影響較為明顯。
受死區(qū)影響,逆變器實(shí)際輸出電壓與期望輸出電壓之間存在一個(gè)誤差Δu,由于輸出電壓是直流且穩(wěn)定情況下系統(tǒng)模型是線性的,誤差電壓Δu可以認(rèn)為是一個(gè)恒定值,因此采用兩點(diǎn)式伏安法辨識(shí)電阻值為
(4)
式中:UDC1、UDC2分別為直軸注入的兩次直流電壓指令值;idf1、idf2分別為兩次直軸響應(yīng)的電流值;Ud1、Ud2分別為兩次直軸注入的實(shí)際直流電壓幅值。
由(4)式可知,通過(guò)注入兩個(gè)幅值不等的直流電壓,根據(jù)電壓差值和響應(yīng)電流的差值來(lái)辨識(shí)電阻,可以消除死區(qū)對(duì)辨識(shí)結(jié)果的影響。
伏安法辨識(shí)電阻時(shí)系統(tǒng)是開(kāi)環(huán)狀態(tài)且注入的電壓為脈沖電壓,考慮到不同的電機(jī)電阻值不同,注入同一個(gè)電壓值得到的響應(yīng)電流值也不同,過(guò)大的電流值可能對(duì)控制器及電機(jī)造成傷害,而過(guò)小的電流值可能影響辨識(shí)精度。因此本文為了提高系統(tǒng)的通用性及辨識(shí)效率,根據(jù)響應(yīng)電流的實(shí)時(shí)值自動(dòng)調(diào)整注入的電壓值,確保最終辨識(shí)電阻時(shí)所用的響應(yīng)電流值在一個(gè)合理的范圍,辨識(shí)流程如圖2所示,初始給定的兩個(gè)電壓指令中第1個(gè)電壓指令大于第2個(gè)電壓指令。圖2中USD、USI分別表示電壓指令減小和電壓指令增大步長(zhǎng),Idmax、Idmin分別表示設(shè)定得電流上限值和電流下限值。

圖2 定子電阻辨識(shí)流程圖Fig.2 Flow chart of stator resistance identification
本文采用高頻注入法辨識(shí)永磁同步電機(jī)的交直軸等效電感。辨識(shí)過(guò)程中分別向電機(jī)的交直軸注入高頻電壓信號(hào),根據(jù)注入電壓的幅值、頻率和響應(yīng)的電流幅值來(lái)辨識(shí)相應(yīng)的電感值。永磁同步電機(jī)在兩相旋轉(zhuǎn)坐標(biāo)系下的電壓方程為
(5)
式中:ψf為永磁體磁鏈。
由于注入的高頻信號(hào)頻率較高且電流均值為0 A,辨識(shí)過(guò)程中電機(jī)保持靜止,考慮到電阻項(xiàng)很小,在此可以忽略不記,因此電壓方程可以簡(jiǎn)化為
(6)
以直軸為例,注入如下形式的高頻電壓信號(hào)
(7)
式中:Udh、ωdh分別為直軸注入高頻電壓信號(hào)的幅值和頻率。得到的響應(yīng)電流為
(8)
式中:Idh為直軸響應(yīng)電流的幅值。
如圖1中點(diǎn)橫線區(qū)域?yàn)殡姼斜孀R(shí)部分,根據(jù)電壓方程表達(dá)式,已知注入的電壓幅值及頻率只需獲得響應(yīng)的交流電流幅值即可直接計(jì)算電感值,由此直軸電感表達(dá)式為
(9)
同理,交軸電感表達(dá)式為
(10)
式中:Uqh、ωqh分別為交軸注入高頻電壓信號(hào)的幅值和頻率;Iqh為交軸響應(yīng)電流的幅值。
考慮到采樣得到的電流值為離散量,本文采用離散傅里葉變換求得電流信號(hào)的基波幅值,對(duì)電流的一個(gè)周期進(jìn)行N次采樣,根據(jù)(11)式計(jì)算基波電流信號(hào)的實(shí)部a1和虛部b1,再通過(guò)(12)式來(lái)計(jì)算電流幅值M.
(11)
(12)
交軸電感的辨識(shí)流程與直軸類似,在交軸注入高頻電壓信號(hào),根據(jù)離散傅里葉變換求得響應(yīng)電流的基波幅值,再根據(jù)注入頻率及電壓和電流的幅值計(jì)算交軸電感值。
永磁同步電機(jī)電流環(huán)系統(tǒng)通常包括電流環(huán)控制器、逆變器、電機(jī)模型以及電流濾波器。其中電流環(huán)控制器一般采用PI控制器,其傳遞函數(shù)為
(13)
式中:Kp為PI調(diào)節(jié)器的比例增益;Ti為積分時(shí)間常數(shù);s為拉普拉斯算子。在工程設(shè)計(jì)中通常將PI控制器表達(dá)式等效為
(14)
式中:Ki為積分增益系數(shù),Ki=Kp/Ti.
對(duì)逆變器環(huán)節(jié)作1階慣性環(huán)節(jié)與比例環(huán)節(jié)直接串聯(lián)處理,其傳遞函數(shù)為
(15)
式中:KPWM為逆變器的放大倍數(shù),其定義為實(shí)際輸出電壓與給定電壓的比值,當(dāng)前的數(shù)字控制系統(tǒng)中通常采用SVPWM控制,逆變器輸出電壓與給定電壓相等,故KPWM=1;TPWM為逆變器的控制周期。
根據(jù)(5)式所示電壓方程,以交軸為例,永磁同步電機(jī)的傳遞函數(shù)為
(16)
為了提高系統(tǒng)的控制性能,電流環(huán)中的電流反饋還會(huì)經(jīng)過(guò)一個(gè)濾波環(huán)節(jié),濾波器的傳遞函數(shù)為
(17)
式中:Tcf為電流反饋濾波時(shí)間常數(shù)。
綜上所述,永磁同步電機(jī)的電流環(huán)控制結(jié)構(gòu)框圖如圖3所示。圖3中,iq,r為交軸電流指令值。

圖3 永磁同步電機(jī)電流環(huán)控制結(jié)構(gòu)框圖Fig.3 Block diagram of PMSM current loop control structure
此時(shí)系統(tǒng)的開(kāi)環(huán)傳遞函數(shù)為
(18)
由電流環(huán)開(kāi)環(huán)傳遞函數(shù)表達(dá)式可知,當(dāng)ω為開(kāi)環(huán)截止頻率ωc時(shí),得
|Gcl(jωc)|=1,
(19)
式中:j為虛數(shù)。
由于系統(tǒng)中1/TPWM和1/Tcf的值遠(yuǎn)大于電流環(huán)的開(kāi)環(huán)截止頻率,故電流環(huán)中的逆變器和電流濾波器對(duì)系統(tǒng)中、低頻段響應(yīng)特性的影響可以忽略不計(jì),此時(shí)電流環(huán)的開(kāi)環(huán)傳遞函數(shù)可以簡(jiǎn)化為
(20)
電流環(huán)作為永磁同步電機(jī)控制系統(tǒng)的最內(nèi)環(huán),其控制性能直接影響系統(tǒng)最終的控制效果,為保證永磁同步電機(jī)的動(dòng)態(tài)和靜態(tài)性能,要求電流環(huán)在穩(wěn)態(tài)時(shí)保證無(wú)靜差,動(dòng)態(tài)時(shí)對(duì)電流指令具有良好的響應(yīng)速度。根據(jù)自動(dòng)控制系統(tǒng),典型Ⅰ型系統(tǒng)只要參數(shù)的選擇能保證足夠的中頻帶寬度,系統(tǒng)就一定是穩(wěn)定的,且有足夠的穩(wěn)定裕量。同時(shí)由于電機(jī)的電氣時(shí)間常數(shù)Tl=Lq/R通常較大,為了盡可能削弱大慣性環(huán)節(jié)對(duì)系統(tǒng)的影響,提高系統(tǒng)的動(dòng)態(tài)響應(yīng)速度,在工程設(shè)計(jì)中,通常用電流環(huán)控制器的零點(diǎn)對(duì)消掉被控對(duì)象中較大時(shí)間常數(shù)的極點(diǎn),將電流環(huán)開(kāi)環(huán)傳遞函數(shù)校正成典型Ⅰ型系統(tǒng),則
(21)
再根據(jù)(19)式得到電流環(huán)控制器參數(shù)為
Kp=Lqωc,
Ki=Rωc.
(22)
由(22)式可知,已知電機(jī)參數(shù)后,只需要根據(jù)系統(tǒng)要求設(shè)定系統(tǒng)期望開(kāi)環(huán)截止頻率,即可實(shí)現(xiàn)電流環(huán)控制器參數(shù)的自動(dòng)整定。
工程中通常取系統(tǒng)閉環(huán)帶寬ωb近似為開(kāi)環(huán)截止頻率的1.1~1.4倍,同時(shí)為避免逆變器開(kāi)關(guān)諧波對(duì)系統(tǒng)產(chǎn)生干擾,電流環(huán)的閉環(huán)帶寬要小于系統(tǒng)開(kāi)關(guān)頻率的1/10[15],因此
(23)
(24)
為了驗(yàn)證本文控制算法的有效性及通用性,分別在兩組不同的永磁同步電機(jī)平臺(tái)上進(jìn)行實(shí)驗(yàn)驗(yàn)證。圖4和圖5所示為25 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)和20 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)。兩組實(shí)驗(yàn)平臺(tái)均包括2臺(tái)對(duì)拖的永磁同步電機(jī),其中一臺(tái)控制系統(tǒng)轉(zhuǎn)速,一臺(tái)控制系統(tǒng)轉(zhuǎn)矩。

圖4 25 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)Fig.4 Experimental platform of 25 kW PMSM

圖5 20 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)Fig.5 Experimental platform of 20 kW PMSM
在兩組實(shí)驗(yàn)平臺(tái)上進(jìn)行實(shí)驗(yàn)時(shí),均將其中控制系統(tǒng)轉(zhuǎn)矩的永磁同步電機(jī)作為被辨識(shí)和控制的對(duì)象。2臺(tái)被辨識(shí)的電機(jī)參數(shù)分別如表1和表2所示,其中電機(jī)的定子電阻和交直軸電感值為電機(jī)的設(shè)計(jì)值,可作為辨識(shí)結(jié)果的參考,實(shí)驗(yàn)時(shí)系統(tǒng)的開(kāi)關(guān)頻率均為10 kHz.

表1 25 kW永磁同步電機(jī)參數(shù)表Tab.1 Parameters of 25 kW PMSM

表2 20 kW永磁同步電機(jī)參數(shù)表Tab.2 Parameters of 20 kW PMSM
首先在25 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上進(jìn)行實(shí)驗(yàn),先對(duì)電機(jī)的定子電阻進(jìn)行辨識(shí),整個(gè)辨識(shí)時(shí)間大致為2.5 s. 如圖6(a)所示,實(shí)驗(yàn)中分別向直軸施加兩次幅值不等的電壓信號(hào),初次給定電壓信號(hào)UDC1=3.5 V,第2次給定的電壓信號(hào)UDC2=3 V,兩次注入電壓持續(xù)時(shí)間均為0.3 s. 圖6(b)為響應(yīng)電流波形,等待電流值趨于穩(wěn)定后,分別測(cè)量并記錄兩次電流幅值。如圖7所示,根據(jù)兩次注入的電壓值和響應(yīng)電流穩(wěn)態(tài)幅值計(jì)算得被辨識(shí)電機(jī)電阻值為6.2 mΩ.

圖6 25 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上辨識(shí)定子電阻時(shí)直軸電壓和電流波形Fig.6 Direct-axis voltage and current waveforms for stator resistance identification on 25 kW PMSM experimental platform

圖7 25 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上定子電阻辨識(shí)結(jié)果Fig.7 Identified results of stator resistance on 25 kW PMSM experimental platform
辨識(shí)等效交直軸電感時(shí),分別向直軸和交軸方向注入高頻電壓信號(hào)。實(shí)驗(yàn)中注入電壓信號(hào)的頻率均為250 Hz,注入信號(hào)持續(xù)時(shí)間均為0.5 s,辨識(shí)直軸電感值時(shí)注入的電壓信號(hào)幅值為20 V,辨識(shí)交軸電感值時(shí)注入的電壓信號(hào)幅值為40 V. 圖8為辨識(shí)直軸電感時(shí)向直軸注入的正弦電壓波形和響應(yīng)電流波形,辨識(shí)得到的直軸電感值為119 μH(見(jiàn)圖9);圖10為辨識(shí)交軸電感時(shí)向交軸注入的正弦電壓波形和響應(yīng)電流波形,辨識(shí)得到的交軸電感值為394 μH(見(jiàn)圖11)。

圖8 25 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上辨識(shí)直軸電感時(shí)電壓和電流波形Fig.8 Voltage and current waveforms for direct-axis inductance identification on 25 kW PMSM experimental platform

圖9 25 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上直軸電感辨識(shí)結(jié)果Fig.9 Identified results of direct-axis inductance on 25 kW PMSM experimental platform

圖10 25 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上辨識(shí)交軸電感時(shí)電壓和電流波形Fig.10 Voltage and current waveforms for quadrature-axis inductance identification on 25 kW PMSM experimental platform

圖11 25 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上交軸電感辨識(shí)結(jié)果Fig.11 Identified results of quadrature-axis inductance on 25 kW PMSM experimental platform
實(shí)驗(yàn)中為了增加辨識(shí)結(jié)果的準(zhǔn)確性,通過(guò)離散傅里葉變換計(jì)算電流幅值時(shí),隨機(jī)選取4個(gè)電流周期分別計(jì)算電流幅值,再對(duì)這4個(gè)電流幅值求平均后,結(jié)合注入電壓信號(hào)幅值及注入信號(hào)頻率計(jì)算電感值。
在辨識(shí)得到電機(jī)的定子電阻和交直軸電感值后,采用電流環(huán)控制器參數(shù)整定方法對(duì)電流環(huán)所用PI控制器參數(shù)進(jìn)行自動(dòng)整定,為保證系統(tǒng)的穩(wěn)定性,設(shè)置電流環(huán)系統(tǒng)的期望截止頻率為200 Hz,結(jié)合辨識(shí)結(jié)果計(jì)算得到控制器參數(shù)Kp=0.32,Ki=7.75,這里用到的電感值為平均電感值。
圖12所示為25 kW永磁同步電機(jī)運(yùn)行于500 r/min時(shí)階躍給定交軸電流指令50 A的電流響應(yīng)波形,根據(jù)波形圖可以看到響應(yīng)電流的響應(yīng)速度較快且基本無(wú)超調(diào),響應(yīng)值與指令值之間無(wú)靜差。

圖12 25 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上交軸電流階躍響應(yīng)波形Fig.12 Quadrature-axis current step response waveform on 25 kW PMSM experimental platform
在20 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上進(jìn)行重復(fù)實(shí)驗(yàn),同樣先進(jìn)行定子電阻辨識(shí)。如圖13所示,實(shí)驗(yàn)中初次給定電壓信號(hào)UDC1=6.5 V,第2次給定的電壓信號(hào)UDC2=6 V,兩次注入電壓持續(xù)時(shí)間均為3 s,辨識(shí)結(jié)果如圖14所示,計(jì)算得到被辨識(shí)電機(jī)電阻值為13.2 mΩ.

圖13 20 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上辨識(shí)定子電阻時(shí)直軸電壓和電流波形Fig.13 Voltage and current waveforms for stator resistance identification on 20 kW PMSM experimental platform

圖14 20 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上定子電阻辨識(shí)結(jié)果Fig.14 Identified results of stator resistance on 20 kW PMSM experimental platform
圖15~圖18為辨識(shí)等效交直軸電感的實(shí)驗(yàn)波形。實(shí)驗(yàn)中注入電壓信號(hào)幅值與頻率均與25 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)的實(shí)驗(yàn)相同,但由于兩臺(tái)被測(cè)電機(jī)的電感值不同,其對(duì)應(yīng)的高頻響應(yīng)電流幅值也不同,計(jì)算可得20 kW永磁同步電機(jī)的交直軸電感辨識(shí)結(jié)果分別為170 μH和250 μH.

圖16 20 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上直軸電感辨識(shí)結(jié)果Fig.16 Identified results of direct-axis inductance on 20 kW PMSM experimental platform

圖17 20 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上辨識(shí)交軸電感時(shí)電壓和電流波形Fig.17 Voltage and current waveforms for quadrature-axis inductance identification on 20 kW PMSM experimental platform

圖18 20 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上交軸電感辨識(shí)結(jié)果Fig.18 Identified results of quadrature-axis inductance on 20 kW PMSM experimental platform
同樣根據(jù)實(shí)驗(yàn)得到的電機(jī)參數(shù)進(jìn)行電流環(huán)控制器參數(shù)的整定,電流環(huán)的期望截止頻率設(shè)為200 Hz,得到控制器參數(shù)Kp=0.26,Ki=16.6. 如圖19所示為20 kW永磁同步電機(jī)運(yùn)行于400 r/min時(shí),交軸電流指令從0 A升至20 A再升至40 A的電流響應(yīng)波形,實(shí)驗(yàn)結(jié)果證明該方法同樣可以使20 kW永磁同步電機(jī)具有較快的動(dòng)態(tài)響應(yīng)和良好的控制性能。

圖19 20 kW永磁同步電機(jī)實(shí)驗(yàn)平臺(tái)上交軸電流階躍響應(yīng)波形Fig.19 Quadrature-axis current step response waveform on 20 kW PMSM experimental platform
本文結(jié)合電機(jī)靜止參數(shù)辨識(shí)方法及電流環(huán)控制器參數(shù)自動(dòng)整定方法,在電機(jī)靜止條件下實(shí)現(xiàn)了對(duì)電機(jī)定子電阻及等效交直軸電感的辨識(shí),并根據(jù)辨識(shí)得到的電機(jī)參數(shù)自動(dòng)整定出可以直接用于電機(jī)控制的電流環(huán)控制器參數(shù)。得到主要結(jié)論如下:
1)本文方法邏輯清晰,實(shí)現(xiàn)過(guò)程較為簡(jiǎn)單,不需要額外的輔助工具。
2)采用本文方法可以實(shí)現(xiàn)當(dāng)電機(jī)控制器應(yīng)用于不同電機(jī)平臺(tái)時(shí)都能夠具有相對(duì)較好地控制效果,能更快更好地實(shí)現(xiàn)控制器的初始化。
3)實(shí)驗(yàn)分別在兩個(gè)不同的實(shí)驗(yàn)平臺(tái)上進(jìn)行驗(yàn)證,實(shí)驗(yàn)結(jié)果證明了本文方法的有效性及通用性。