任濤


【摘 要】 數(shù)學(xué)課堂教學(xué)離不開提問,提問質(zhì)量直接影響教學(xué)效果。盲校數(shù)學(xué)教師可基于盲生以耳代目、以手代目的認(rèn)知特點(diǎn),巧妙設(shè)計(jì)指向性明確、關(guān)聯(lián)性緊密、邏輯性清晰的問題,引導(dǎo)盲生充分運(yùn)用聽覺、觸覺等多重感官進(jìn)行數(shù)學(xué)學(xué)習(xí),經(jīng)歷數(shù)學(xué)知識(shí)形成的過程,體驗(yàn)數(shù)學(xué)思想和方法,從而高效實(shí)現(xiàn)預(yù)期教學(xué)目標(biāo)。
【關(guān)鍵詞】 盲生;認(rèn)知特點(diǎn);數(shù)學(xué);有效提問
【中圖分類號(hào)】 G761
《盲校義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2016年版)》指出:“盲校的數(shù)學(xué)教育不僅要考慮數(shù)學(xué)自身的特點(diǎn),更應(yīng)遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,發(fā)揮學(xué)生的聽覺、觸覺、殘余視覺等優(yōu)勢(shì)潛能,強(qiáng)調(diào)選擇合適的輔助手段補(bǔ)償視覺缺陷,豐富學(xué)生的感性經(jīng)驗(yàn),培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)。”盲生由于視覺缺陷,主要依靠聽覺、觸覺等感官去認(rèn)識(shí)世界。在數(shù)學(xué)課堂上只依靠聽覺、觸覺以及殘余視覺進(jìn)行學(xué)習(xí)容易導(dǎo)致獲得的信息零散、片面,因此需要教師用簡(jiǎn)潔明了的語(yǔ)言指導(dǎo)盲生將碎片化的信息組合成完整的信息。有效提問是指在教學(xué)活動(dòng)中,通過設(shè)疑、激趣、引思等巧妙提問,在師生之間進(jìn)行高質(zhì)量的對(duì)話和交流。在盲校數(shù)學(xué)課堂中開展基于盲生認(rèn)知特點(diǎn)的有效提問,可以喚醒盲生的求知欲,激發(fā)盲生思考,引導(dǎo)盲生經(jīng)歷數(shù)學(xué)知識(shí)形成的過程,使盲生掌握數(shù)學(xué)基礎(chǔ)知識(shí)和技能,體驗(yàn)數(shù)學(xué)基本思想和方法,最終高效實(shí)現(xiàn)預(yù)期教學(xué)目標(biāo)。
一、設(shè)計(jì)指向性明確的問題,指導(dǎo)盲生開展數(shù)學(xué)活動(dòng)
盲生平時(shí)接觸的主要是三維物體,不能自然地建立起二維與三維的對(duì)應(yīng)關(guān)系。因此,在圖形與幾何教學(xué)中,教師可設(shè)計(jì)指向性明確的問題,帶領(lǐng)盲生經(jīng)歷圖形抽象過程。
例如,現(xiàn)實(shí)生活中存在著物體平移、旋轉(zhuǎn)等現(xiàn)象,雖然盲生難以通過視覺辨認(rèn),但可以借助教學(xué)具直觀感知平移、旋轉(zhuǎn)、軸對(duì)稱的特征,深化對(duì)現(xiàn)實(shí)生活中常見的平移、旋轉(zhuǎn)現(xiàn)象的認(rèn)識(shí)。在教學(xué)生活中的旋轉(zhuǎn)現(xiàn)象時(shí),教師先提問:“你知道吊扇、旋轉(zhuǎn)木馬是怎么運(yùn)動(dòng)的嗎?”指向生活現(xiàn)象的問題更易激發(fā)盲生的學(xué)習(xí)興趣。然后指導(dǎo)盲生經(jīng)歷制作紙風(fēng)車的整個(gè)過程,了解紙風(fēng)車的4個(gè)扇葉繞著一點(diǎn)轉(zhuǎn)動(dòng),旋轉(zhuǎn)點(diǎn)相當(dāng)于圓心,扇葉繞著圓心做圓周運(yùn)動(dòng),使盲生初步認(rèn)識(shí)旋轉(zhuǎn)現(xiàn)象。為了讓盲生了解簡(jiǎn)單圖形旋轉(zhuǎn)的變化特征,教師設(shè)計(jì)制作盲生能夠觸摸感知的旋轉(zhuǎn)學(xué)具,通過指向到位的問題“這個(gè)旋轉(zhuǎn)學(xué)具可以讓直角三角形按要求繞一個(gè)點(diǎn)做旋轉(zhuǎn)運(yùn)動(dòng),你會(huì)操作嗎?”,指導(dǎo)盲生通過操作學(xué)具,經(jīng)歷從直觀物體運(yùn)動(dòng)到平面圖形運(yùn)動(dòng)的抽象過程。接著,引導(dǎo)盲生通過操作、觀察、比較旋轉(zhuǎn)運(yùn)動(dòng),理解順(逆)時(shí)針旋轉(zhuǎn)90°、30°等的含義,豐富數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。最后,用提問引導(dǎo)盲生將逆(順)時(shí)針旋轉(zhuǎn)與生活中松(緊)閥門、瓶蓋、螺絲帽,開(關(guān))水龍頭等操作活動(dòng)建立聯(lián)系,進(jìn)一步感受“數(shù)學(xué)來源于生活,又服務(wù)于生活”,增強(qiáng)應(yīng)用意識(shí)。
二、設(shè)計(jì)關(guān)聯(lián)性緊密的問題,引導(dǎo)盲生逐步探究
數(shù)學(xué)課堂中的教學(xué)內(nèi)容相互關(guān)聯(lián)、逐步遞進(jìn)。教師可以設(shè)計(jì)關(guān)聯(lián)性緊密的問題,激發(fā)盲生探索數(shù)學(xué)規(guī)律的興趣,引導(dǎo)盲生體驗(yàn)數(shù)學(xué)知識(shí)形成的過程。
例如,在“三角形內(nèi)角和”教學(xué)中,教師設(shè)計(jì)“拼一拼、折一折”活動(dòng),用一系列關(guān)聯(lián)性緊密的問題引導(dǎo)盲生在動(dòng)手操作中發(fā)現(xiàn)和驗(yàn)證三角形內(nèi)角和的規(guī)律,經(jīng)歷“三角形內(nèi)角和是180°”的發(fā)現(xiàn)和驗(yàn)證過程,發(fā)展空間想象力和推理能力。首先,從盲生熟悉的三角板入手,要求盲生算出三角板(特殊三角形)的內(nèi)角和,并說出自己的發(fā)現(xiàn)。盲生對(duì)三角板中每個(gè)角的度數(shù)都很熟悉,能獨(dú)立地完成三角板的內(nèi)角和計(jì)算:90°+45°+45°=180°,90°+30°+60°=180°。特殊三角形內(nèi)角和的計(jì)算為盲生探究規(guī)律提供了思路——可以將任意三角形的3個(gè)內(nèi)角的度數(shù)加起來求和,教師用提問引導(dǎo)盲生大膽猜想三角形內(nèi)角和是180°。然后,由“180°是什么角”的問題引導(dǎo)盲生聯(lián)想到平角,通過用3個(gè)相同的三角板拼角的活動(dòng),幫助盲生理清驗(yàn)證三角形內(nèi)角和的思路,用提問為探究方法提供有效線索。接著,通過“我們用測(cè)量計(jì)算、拼角的方法驗(yàn)證了特殊三角形的內(nèi)角和是180°,能確定每一種三角形的內(nèi)角和都是180°嗎?”這一提問,啟發(fā)盲生開展從特殊現(xiàn)象到一般規(guī)律的探究,激發(fā)盲生的探究興趣。盲生利用折紙法,分別依照直角、銳角、鈍角三角形紙片上折疊的痕跡將內(nèi)角折到一起,發(fā)現(xiàn)3個(gè)內(nèi)角的頂點(diǎn)交于一點(diǎn),拼成了一個(gè)平角,即180°。盲生在經(jīng)歷利用折紙法驗(yàn)證3種不同類型三角形內(nèi)角和是180°的過程中成為知識(shí)的發(fā)現(xiàn)者,感受探究規(guī)律的樂趣。最后,教師提出一系列拓展性問題:“七巧板中的兩個(gè)小號(hào)三角形的內(nèi)角和分別是多少?它們拼成的中號(hào)三角形的內(nèi)角和是多少?一個(gè)小號(hào)三角形的內(nèi)角和是180°,將兩個(gè)小號(hào)三角形拼在一起不應(yīng)該是360°嗎?”通過關(guān)聯(lián)性緊密的問題加深盲生對(duì)三角形內(nèi)角和的認(rèn)識(shí),促進(jìn)盲生數(shù)學(xué)思維的發(fā)展。
三、設(shè)計(jì)邏輯性清晰的問題,培養(yǎng)盲生良好數(shù)學(xué)思維習(xí)慣
受視覺缺陷影響,盲生思維的片面性強(qiáng),觀察問題局限于表面,考慮問題不周全,難以認(rèn)清問題的細(xì)節(jié)及其聯(lián)系。因此,教師在教學(xué)中要注意選擇邏輯性清晰的問題,幫盲生擺脫思維定勢(shì)的束縛,培養(yǎng)其觀察力、思維力,提高他們解決問題的能力。
例如,教師設(shè)計(jì)應(yīng)用題:“用長(zhǎng)23米的籬笆,利用一面墻(墻的最大可用長(zhǎng)度為10米),圍成一個(gè)長(zhǎng)方形的花圃(每條邊為整米數(shù)),這個(gè)花圃的最大面積是多少?”引導(dǎo)盲生從多角度、多方面進(jìn)行觀察與思考。首先,用提問引導(dǎo)盲生分析關(guān)鍵信息“利用一面墻”和“圍成一個(gè)最大的長(zhǎng)方形花圃”,使盲生得出“這個(gè)花圃的一邊是墻,另外三邊需用籬笆圍,而且要面積最大”的初步結(jié)論。盲生聯(lián)系長(zhǎng)方形的周長(zhǎng)計(jì)算方法嘗試解答每條籬笆邊的長(zhǎng)度:23÷3=7(米)余2(米)。然后結(jié)合“墻的最大可用長(zhǎng)度為10米”推算長(zhǎng)方形花圃的長(zhǎng)與寬的可能組合,運(yùn)用長(zhǎng)方形面積計(jì)算公式解決問題:籬笆一條長(zhǎng)邊9米、兩條短邊7米,9×7=63(平方米);籬笆一條短邊7米、兩條長(zhǎng)邊8米,7×8=56(平方米)。盲生通過對(duì)比分析找出正確答案。盲生經(jīng)歷仔細(xì)分析、合理猜想、有序推算、全面驗(yàn)證的整個(gè)解題過程,逐漸養(yǎng)成了從多角度、多方面進(jìn)行觀察與思考的習(xí)慣。
本文為江蘇省第13期中小學(xué)教學(xué)研究重點(diǎn)自籌課題“基于缺陷補(bǔ)償?shù)拿ば?shù)學(xué)課堂提問有效性的行動(dòng)研究”(編號(hào):2019JK13-ZB06)階段性研究成果。
(作者單位:江蘇省南京市盲人學(xué)校,210006)