999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Keap1-Nrf2-ARE信號通路與糖尿病視網膜病變的相關性研究進展

2024-06-24 00:00:00唐艷紅,蘇梅貴
醫學信息 2024年10期
關鍵詞:氧化應激

摘要:糖尿病視網膜病變(DR)是糖尿病并發癥中最常見的微血管病變,是我國糖尿病(DM)患者視力下降甚至致盲的主要原因。近年來研究發現,氧化應激是DR的發病機制之一,而Kelch樣環氧氯丙烷相關蛋白-1(Keap1)-核因子E2相關因子2(Nrf2)-抗氧化反應元件(ARE)信號通路是機體最重要的內源性抗氧化應激通路。故本文就Keap1-Nrf2-ARE信號通路與氧化應激、DR之間的相關性作一綜述。

關鍵詞:Keap1-Nrf2-ARE信號通路;糖尿病視網膜病變;氧化應激

中圖分類號:R774" " " " " " " " " " " " " " " " " 文獻標識碼:A" " " " " " " " " " " " " " " " " DOI:10.3969/j.issn.1006-1959.2024.10.041

文章編號:1006-1959(2024)10-0189-04

Research Progress on the Relationship Between Keap1-Nrf2-ARE Signaling Pathway and Diabetic Retinopathy

TANG Yan-hong,SU Mei-gui

(Department of Ophthalmology,Linxia State Hospital of Traditional Chinese Medicine,Linxia 731400,Gansu,China)

Abstract:Diabetic retinopathy (DR) is the most common microvascular disease among diabetic complications, and it is the main cause of vision loss and even blindness in patients with diabetes mellitus (DM) in our country. In recent years, it has been found that oxidative stress is one of the pathogenesis of DR, and Kelch-like epichlorohydrin related protein-1 (Keap1)-nuclear factor E2 related factor 2 (Nrf2)-antioxidant response element (ARE) signaling pathway is the most important endogenous anti-oxidative stress pathway. Therefore, this article reviews the correlation between Keap1-Nrf2-ARE signaling pathway and oxidative stress and DR.

Key words:Keap1-Nrf2-ARE signaling pathway;Diabetic retinopathy;Oxidative stress

糖尿病(diabetes mellitus, DM)已成為繼心血管疾病和腫瘤之后第3位威脅人們健康和生命的非傳染性疾病,已成為一個全球性的嚴重公共衛生問題[1]。糖尿病視網膜病變(diabetic retinopathy, DR)是DM最常見和嚴重的慢性并發癥,是致殘、致盲、致死的主要原因,嚴重影響著DM患者的生活質量。近年來DR發病機制研究重點已由四大生化機制向氧化應激機制轉變。經研究證實[2-4],氧化應激是DR發生發展的關鍵因素,而Kelch樣環氧氯丙烷相關蛋白-1(epoxy chloropropane Kelch sample related protein-1, Keap1)-核因子E2相關因子2(nuclear factor erythroid-2 related factor 2, Nrf2)-抗氧化反應元件(antioxidant response element, ARE)信號通路是脊椎動物在進化過程中獲得的最關鍵的細胞保護機制之一,是近年發現的機體最重要的內源性抗氧化信號通路,也是一種綜合的氧化還原敏感信號系統[5]。目前,大量研究表明[6-8],通過激活Keap1-Nrf2-ARE信號通路,可以抑制氧化應激,延緩DR的發生發展,而以Keap1-Nrf2-ARE信號通路為靶點防治由氧化應激導致的各種疾病是一種潛在的合理方法。故本文對Keap1-Nrf2-ARE信號通路與氧化應激、DR之間的相關性作一綜述。

1 Keap1-Nrf2-ARE信號通路概述

Keap1-Nrf2-ARE信號通路是機體抗氧化損傷的關鍵信號通路[9]。生理狀態下,胞漿內的Keap1通過含有E3的Cul3泛素連接酶與Nrf2結合在一起,Nrf2被蛋白體酶降解。當機體發生氧化應激反應時,Keap1與Nrf2解耦聯,Keap1的半胱氨酸殘基被修飾,發生Keap1構象變化,穩定狀態的Nrf2發生核轉移進入細胞核,與Maf蛋白結合成異質二聚體后與ARE結合,啟動ARE調控的Ⅱ相代謝酶(谷胱甘肽-S-轉移酶、NQO1、葡萄糖醛酸轉移酶1A6、黃曲霉素B1醛還原酶和微粒體環氧化物水解酶等)和抗氧化酶(HO-1、SOD和GSH-PX等)的表達,從而發揮抗氧化應激作用,使細胞內環境保持穩態[10]。

2 Keap1-Nrf2-ARE信號通路與氧化應激的關系

氧化應激是一種活性氧(reactive oxygen species, ROS)及活性氮(eactive nitrogen species, RNS)生產和清除不協調而導致機體失衡的狀態。在生理條件下,以RNS和氧自由基[如超氧陰離子(O2-)、羥自由基(OH-)和過氧化氫(H2O2)]為主的自由基的產生是正常的,也是無法避免的。事實上,機體生理活動需要低、中等水平的自由基,促進細胞新陳代謝、增殖、分化、免疫系統調節和血管重塑[11]。為了控制其水平,細胞使用酶和非酶的抗氧化防御系統。所有生物體在其一生中經常暴露在內源性和外源性氧化應激源中,其中一些會導致有害的反應性氧化劑和親電性。此外,許多環境刺激,包括紫外線輻射、電離輻射、化療藥物、炎性細胞因子和環境毒素等,都可以觸發高水平的ROS和RNS,從而打破機體正常的氧化還原平衡,最終導致氧化應激的產生[12]。ROS和RNS的升高會導致蛋白質、脂質的氧化損傷,從而可激活Keap1-Nrf2-ARE信號通路抗氧化應激。

激活Keap1-Nrf2-ARE信號通路的關鍵是激活Nrf2,而Nrf2的激活主要受Keap1介導及Nrf2自身的磷酸化等調控。半胱氨酸巰基反應活性高,參與調控細胞識別、信號傳導等生理過程。研究證實[13,14],人類Keap1共含有27個半胱氨酸殘基,其中7對(Cys151、Cys257、Cys273、Cys288、Cys297、Cys434、Cys613)ROS和親電子試劑具有高度反應性,并被認為參與氧化還原反應。氧化應激作用下,細胞中的蛋白質發生構象變化,Keap1的特定半胱氨酸殘基修飾,Keap1與Nrf2結合阻止其進入細胞核,故Keap1也被稱為Nrf2的抑制劑[15]。當機體發生氧化應激反應時,產生的某些化合物可以與含半胱氨酸的蛋白以共價鍵結合構成內源性親電反應的蛋白質組,氧化應激的主要生物反應是抗氧化防御系統,而Keap1-Nrf2-ARE是這些蛋白控制的氧化應激反應途徑中最突出的信號通路[16,17]。

3 Keap1-Nrf2-ARE信號通路與DR的關系

Keap1-Nrf2-ARE信號通路在抗氧化反應調節中起著至關重要作用[18]。研究表明[19],通過激活Keap1-Nrf2-ARE信號通路,可以抑制氧化應激,延緩DR的發生發展。在沒有氧化應激的情況下,Keap1使Nrf2隔離在胞漿中,介導了Nrf2蛋白酶體的降解。在暴露于氧化應激的情況下,Keap1經歷了構象變化,允許Nrf2移位到細胞核,結合到ARE區域,并啟動靶基因的轉錄[20]。

大量研究強調了DM視網膜中高水平的ROS及其在細胞信號改變中的作用,這種改變導致視網膜細胞的損傷,最終導致DR[21,22]。在DR條件下,大量的ROS可引起視網膜微血管、視網膜細胞和視網膜神經節細胞的交替和損傷。人體有一個復雜的氧化應激反應系統,可減少氧化劑的產生或增強抗氧化能力,從而減輕ROS對細胞的損害。Li X等[23]建立了2型糖尿病DR大鼠模型,以正常大鼠作為對照組,結果發現模型組大鼠房水中抗氧化指標SOD、GSH-Px及抗氧化能力均顯著低于對照組(P<0.05),即視網膜Keap1蛋白表達明顯降低,Nrf2蛋白表達明顯升高,說明DR大鼠視網膜細胞凋亡明顯增加,并伴有明顯的氧化應激反應,而Keap1-Nrf2-ARE通路的激活可能起到減輕氧化應激損傷、保護視網膜的作用。Xu Z等[24]研究發現,與野生型小鼠相比,Nrf2缺乏的糖尿病小鼠在糖尿病5周后視網膜超氧化物顯著增加。

4基于Keap1-Nrf2-ARE信號通路治療DR的機制

DR的發病受多因素、多環節、多基因的影響,具體致病機制尚不明確,但氧化應激是DR的重要發病機制之一。研究表明[25],Keap1-Nrf2-ARE信號通路可能是藥物發揮保護作用的潛在抗氧化應激通路,激活此信號通路,可為治療DR提供新思路、新途徑。

4.1西醫治療

Zhou X等[26]將培養的視網膜原代Müller細胞用谷氨酰胺合成酶(GS)抗體進行鑒定,并將其隨機分為3組:正常血糖組(NG,5.5mol/L)、高血糖組(HG,30 mmol/L)、高血糖組(30 mmol/L)加普羅布考(HGPB,10μ/L),結果發現普羅布考可抑制高糖培養的人視網膜Müller細胞內ROS的生成,促進細胞增殖,減少凋亡,這可能與Keap1-Nrf2-Are氧化應激信號通路激活有關。Liu Q等[27]將小鼠分為DM組和非DM對照組,結果發現與非DM對照組相比,DM組小鼠視網膜中Nrf2的表達明顯上調,而非諾貝特可減輕DR氧化應激和神經炎癥反應,其原因主要是通過調節Nrf2的表達和NLRP3的炎癥小體激活來實現的。Xu X等[28]將126只DR大鼠隨機分為模型組、實驗組和對照組,模型組大鼠注射生理鹽水,實驗組給予氨基甲酰促紅細胞生成素(CEPO)治療,對照組給予紅花黃色素(SY)治療,結果顯示實驗組Nrf2的表達水平明顯高于對照組(P<0.05),說明CEPO治療DR的療效優于SY。因此,CEPO可能在不影響血管生成的情況下通過激活Nrf2信號通路抑制DR大鼠視網膜組織細胞的凋亡和氧化應激損傷。Shi Q等[29]將大鼠隨機分為正常對照組、糖尿病對照組和帕比農(BP)治療組,結果發現與對照組相比,BP治療組Nrf2水平上調,提示BP通過激活Nrf2途徑能顯著降低DR大鼠視網膜前炎性細胞因子(IL-18和IL-1β)表達,提高SOD、過氧化氫酶和谷胱甘肽過氧化物酶的活性,增強受損視網膜的抗氧化能力。

4.2中醫藥治療

Cai J等[30]研究發現,50、100和250 μg/ml的黃精多糖可促進Nrf2的表達,降低氧化應激,延緩DR的進展。Dong C等[31]將雄性鼠隨機分為對照組、糖尿病組、人參皂苷Rb1組(20 mg/kg)和人參皂甙Rb1組(40 mg/kg),結果發現糖尿病大鼠視網膜MDA含量明顯高于對照組(P<0.05);且與糖尿病組比較,人參皂甙(20、40 mg/kg)治療后MDA含量降低(P<0.05);另與對照組相比,糖尿病組Nrf2含量降低(P<0.05),表明人參皂甙Rb1(20、40 mg/kg)可增加視網膜細胞核中Nrf2的含量。這些研究結果表明,人參皂苷Rb1可以通過激活Nrf2信號通路來調節大鼠視網膜抗氧化功能,進而減輕DR。Bucolo C等[32]對正常和高糖條件下培養的人視網膜色素上皮細胞(RPE)進行了體外研究,結果證實姜黃素通過激活Nrf2信號通路對高糖誘導的RPE細胞損傷具有保護作用,提示姜黃素可能在DR的治療中具有一定的治療價值。Zhang T等[33]將45只小鼠隨機分為3組:DR模型、DR+高良姜精(1 mg/kg)、DR+高良姜精(10 mg/kg),結果發現高良姜素可誘導Nrf2的活化,且在Nrf2基因敲除的糖尿病小鼠中,高良姜素對血-視網膜屏障分解的衰減作用減弱。

4.3其他治療

Arumugam B等[34]研究發現,楊梅素衍生物F2(楊梅葉提取物)可通過激活Nrf2來抗氧化,可以作為未來治療DR的藥物。Li S等[35]予以雄性糖尿病大鼠不同劑量的蘿卜硫素(SFN),結果發現SFN增加了損傷視網膜中Nrf2的核積聚,并增加了Nrf2下游的兩種主要抗氧化劑HO-1和NQO1的表達,延緩了DR的發生、發展。Song Y等[36]研究發現,藍莓花色苷(BA)能上調視網膜抗氧化能力,提高GSH含量和谷胱甘肽過氧化物酶活性,降低MDA和ROS水平,還能增加Nrf2水平。這些結果提示,BA可以保護視網膜細胞免受糖尿病引起的氧化應激和炎癥反應,這可能是通過Nrf2信號來調節的。

5總結

DR是糖尿病最常見的微血管病變之一,迄今為止仍無靶點藥物。目前大量研究表明,Keap1-Nrf2-ARE是抗氧化應激反應最重要的內源性信號通路,合理激活Keap1-Nrf2-ARE信號通路可能未來防治糖尿病并發癥的一個潛在靶點。臨床應對Keap1-Nrf2-ARE信號通路進行更進一步的深入研究,探討其在治療DR方面的作用機制。

參考文獻:

[1]Darenskaya MA,Kolesnikova LI,Kolesnikov SI.Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction[J].Bull Exp Biol Med,2021,171(2):179-189.

[2]Ola MS,Al-Dosari D,Alhomida AS.Role of Oxidative Stress in Diabetic Retinopathy and the Beneficial Effects of Flavonoids[J].Curr Pharm Des,2018,24(19):2180-2187.

[3]Suzuki Y,Yao T,Okumura K,et al.Elevation of the vitreous body concentrations of oxidative stress-responsive apoptosis-inducing protein (ORAIP) in proliferative diabetic retinopathy[J].Graefes Archive for Clinical amp; Experimental Ophthalmology,2019,257(7):1519-1525.

[4]Yang X,Huo F,Liu B,et al.Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway[J].Journal of Molecular Neuroscience,2017,61(4):581-589.

[5]Kang KA,Piao MJ,Ryu YS,et al.Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells[J].Oncotarget,2016,7(26):40594-40620.

[6]Kowluru RA,Mishra M,Institute KE,et al.Epigenetic regulation of redox signaling in diabetic retinopathy: Role of Nrf2[J].Free Radical Biology and Medicine,2017,103:155-164.

[7]Li X,Deng A,Liu J,et al.The Role of Keap1-Nrf2-ARE Signal Pathway in Diabetic Retinopathy Oxidative Stress and Related Mechanisms[J].International Journal of Clinical Experimental Pathology,2018,11(6):3084-3090.

[8]Goldstein LD,Lee J,Gnad F,et al.Recurrent loss of NFE2L2exon 2 is a mechanism for Nrf2 pathway activation in human cancers[J].Cell Reports,2016,16(10):2605-2617.

[9]Silva MDF,Pruccoli L,Morroni F,et al.The Keap1/Nrf2-ARE Pathway as a Pharmacological Target for Chalcones[J].Molecules,2018,23(7):1803-1824.

[10]Nezu M,Souma T,Yu L,et al.Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression[J].Kidney International,2016,91(2):387-401.

[11]Rodríguez ML,Pérez S,Mena-Mollá S,et al.Oxidative Stress and Microvascular Alterations in Diabetic Retinopathy: Future Therapies[J].Oxid Med Cell Longev,2019,2019:4940825.

[12]Wu Y,Tang L,Chen B.Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives[J].Oxid Med Cell Longev,2014;2014:752387.

[13]Li C,Cheng L,Wu H,et al.Activation of the KEAP1-NRF2-ARE signaling pathway reduces oxidative stress in Hep2 cells[J].Molecular Medicine Reports,2018,18(3):2541-2550.

[14]Quinti L,Naidu SD,Tr?覿ger U,et al.KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington's disease patients[J].National Academy of Sciences,2017,114(23):E4676-E4685.

[15]Almeida M,Soares M,Ramalhinho AC,et al.Prognosis of hormone-dependent breast cancer seems to be influenced by KEAP1,NRF2 and GSTM1 genetic polymorphisms[J].Molecular Biology Reports,2019,46(3):3213-3224.

[16]Li B,Jiang T,Liu H,et al.Andrographolide protects chondrocytes from oxidative stress injury by activation of the Keap1-Nrf2-Are signaling pathway[J].Journal of Cellular Physiology,2018,234(1):561-571.

[17]Ozben T.Oxidative stress and apoptosis: impact on cancer therapy[J].J Pharm Sci,2007,96(9):2181-2196.

[18]David JA,Rifkin WJ,Rabbani PS,et al.The Nrf2/Keap1/ARE Pathway and Oxidative Stress as a Therapeutic Target in Type II Diabetes Mellitus[J].J Diabetes Res,2017,2017:4826724.

[19]Keleku-Lukwete N,Suzuki M,Yamamoto M.An Overview of the Advantages of KEAP1-NRF2 System Activation during Inflammatory Disease Treatment[J].Antioxid Redox Signal,2018,29(17):1746-1755.

[20]Chuan ZJ,Wei Y,Chao D,et al.Keap1-Nrf2 signaling pathway confers resilience versus susceptibility to inescapable electric stress[J].Eur Arch Psychiatry Clin Neurosci,2018,268(8):865-870.

[21]Ahmad,Ahsan.Biomarkers of inflammation and oxidative stress in ophthalmic disorders[J].J Immunoassay Immunochem,2020,41(3):257-271.

[22]Pickering RJ,Rosado CJ,Sharma A,et al.Recent novel approaches to limit oxidative stress and inflammation in diabetic complications[J].Clin Transl Immunology,2018,7(4):e1016.

[23]Li X,Deng A,Liu J,et al.The role of Keap1-Nrf2-ARE signal pathway in diabetic retinopathy oxidative stress and related mechanisms[J].International Journal of Clinical and Experimental Pathology,2018,11(6):3084-3090.

[24]Xu Z,Wei Y,Gong J,et al.NRF2 plays a protective role in diabetic retinopathy in mice[J].Diabetologia,2014,57(1):204-213.

[25]Battino M,Giampieri F,Pistollato F,et al.Nrf2 as regulator of innate immunity: A molecular Swiss army knife![J].Biotechnology Advances,2018,36(2):358-370.

[26]Zhou X,Ai S,Chen Z,et al.Probucol Promotes High Glucose-Induced Proliferation and Inhibits Apoptosis by Reducing Reactive Oxygen Species Generation in Müller Cells[J].International Ophthalmol,2019,39(12):2833-2842.

[27]Liu Q,Zhang F,Zhang X,et al.Fenofibrate ameliorates diabetic retinopathy by modulating Nrf2 signaling and NLRP3 inflammasome activation[J].Mol Cell Biochem,2018,445(1-2):105-115.

[28]Xu X,Cai Y,Yu Y.Molecular mechanism of the role of carbamyl erythropoietin in treating diabetic retinopathy rats[J].Exp Ther Med,2018,16(1):305-309.

[29]Shi Q,Wang J,Cheng Y,et al.Palbinone alleviates diabetic retinopathy in STZ-induced rats by inhibiting NLRP3 inflammatory activity[J].J Biochem Mol Toxicol,2020,34(7):e22489.

[30]Cai J,Zhu Y,Zuo Y,et al.Polygonatum Sibiricum Polysaccharide Alleviates Inflammatory Cytokines and Promotes Glucose Uptake in High-glucose- and High-insulin-induced 3T3-L1 Adipocytes by Promoting Nrf2 Expression[J].Molecular Medicine Reports,2019,20(4):3951-3958.

[31]Dong C,Liu P,Wang H,et al.Ginsenoside Rb1 attenuates diabetic retinopathy in streptozotocin-induced diabetic rats1[J].Acta Cirurgica Brasileira,2019,34(2):e201900201.

[32]Bucolo C,Drago F,Maisto R,et al.Curcumin prevents high glucose damage in retinal pigment epithelial cells through ERK1/2-mediated activation of the Nrf2/HO-1 pathway[J].J Cell Physiol,2019,234(10):17295-17304.

[33]Zhang T,Mei X,Ouyang H,et al.Natural flavonoid galangin alleviates microglia-trigged blood-retinal barrier dysfunction during the development of diabetic retinopathy[J].J Nutr Biochem,2019,65:1-14.

[34]Arumugam B,Palanisamy UD,Chua KH,et al.Protective effect of myricetin derivatives from Syzygium malaccense against hydrogen peroxide-induced stress in ARPE-19 cells[J].Mol Vis,2019,25:47-59.

[35]Li S,Yang H,Chen X.Protective effects of sulforaphane on diabetic retinopathy: activation of the Nrf2 pathway and inhibition of NLRP3 inflammasome formation[J].Exp Anim,2019,68(2):221-231.

[36]Song Y,Huang L,Yu J.Effects of blueberry anthocyanins on retinal oxidative stress and inflammation in diabetes through Nrf2/HO-1 signaling[J].J Neuroimmunol,2016,301:1-6.

收稿日期:2023-05-09;修回日期:2023-05-26

編輯/杜帆

猜你喜歡
氧化應激
熊果酸減輕Aβ25-35誘導的神經細胞氧化應激和細胞凋亡
中成藥(2021年5期)2021-07-21 08:39:04
基于炎癥-氧化應激角度探討中藥對新型冠狀病毒肺炎的干預作用
戊己散對腹腔注射甲氨蝶呤大鼠氧化應激及免疫狀態的影響
中成藥(2018年6期)2018-07-11 03:01:24
基于氧化應激探討參附注射液延緩ApoE-/-小鼠動脈粥樣硬化的作用及機制
中成藥(2018年5期)2018-06-06 03:11:43
植物化學物質通過Nrf2及其相關蛋白防護/修復氧化應激損傷研究進展
氧化應激與糖尿病視網膜病變
西南軍醫(2016年6期)2016-01-23 02:21:19
尿酸對人肝細胞功能及氧化應激的影響
DNA雙加氧酶TET2在老年癡呆動物模型腦組織中的表達及其對氧化應激中神經元的保護作用
從六經辨證之三陰病干預糖調節受損大鼠氧化應激的實驗研究
乙肝病毒S蛋白對人精子氧化應激的影響
主站蜘蛛池模板: 国产第一页第二页| 免费在线播放毛片| 亚洲福利片无码最新在线播放| 美女亚洲一区| 亚洲av无码久久无遮挡| 成人精品区| 午夜毛片免费观看视频 | 热久久综合这里只有精品电影| 狠狠亚洲五月天| 国产a在视频线精品视频下载| 亚洲高清日韩heyzo| 久久天天躁狠狠躁夜夜躁| 制服丝袜在线视频香蕉| 亚洲成A人V欧美综合| 久久先锋资源| 日韩无码精品人妻| 手机在线免费不卡一区二| 久久精品只有这里有| 天堂成人av| 国产又粗又爽视频| 福利姬国产精品一区在线| 亚洲精品大秀视频| AV天堂资源福利在线观看| 国产精品综合久久久| 四虎免费视频网站| 欧美成一级| 亚洲AV成人一区国产精品| 女人18毛片久久| 中国一级特黄视频| 国产毛片基地| 91亚洲视频下载| 国产亚洲欧美在线中文bt天堂| 国产欧美在线观看视频| 伊人福利视频| 亚洲天堂网视频| 亚洲男人天堂久久| 色哟哟国产精品| 国产一级视频久久| 91久久偷偷做嫩草影院电| 欧美亚洲欧美区| 亚洲欧美综合在线观看| 亚洲无码91视频| 国产成人福利在线视老湿机| 国产精品三区四区| 茄子视频毛片免费观看| 久久精品这里只有精99品| 久久综合伊人 六十路| 99视频只有精品| 日韩专区欧美| 免费一级全黄少妇性色生活片| 国产制服丝袜无码视频| 欧美精品xx| 久久九九热视频| 色综合激情网| 99伊人精品| 免费人成在线观看成人片| 72种姿势欧美久久久大黄蕉| 国产欧美日韩综合在线第一| 网友自拍视频精品区| 日本一区中文字幕最新在线| 国产精品久久久精品三级| 国内精品视频在线| 99国产在线视频| 亚洲黄网在线| 91麻豆精品视频| 亚洲无码日韩一区| 亚洲国产第一区二区香蕉| 久久77777| 日本在线免费网站| 亚洲一区二区无码视频| 国产成人夜色91| 久久久久亚洲av成人网人人软件| 性色一区| 成人精品区| 99视频在线看| 亚洲第一av网站| 久久伊人色| 欧美区一区| 国产成人91精品| 国产成人亚洲精品色欲AV| 久久窝窝国产精品午夜看片| 精品国产香蕉在线播出|