【摘要】在數(shù)學(xué)課堂實(shí)施中,教師通過(guò)引導(dǎo)學(xué)生對(duì)生活情境的抽象,對(duì)實(shí)踐操作的思考及對(duì)類比探究的表達(dá),激發(fā)學(xué)生的問(wèn)題意識(shí),充分調(diào)動(dòng)積極性,加深其對(duì)數(shù)學(xué)學(xué)習(xí)的廣度和深度,幫助學(xué)生更好地掌握數(shù)學(xué)知識(shí)和技能的同時(shí),感悟數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,提高解決問(wèn)題的能力,在學(xué)習(xí)過(guò)程中形成正確的價(jià)值觀、必備品格和關(guān)鍵能力,從而有效地發(fā)展和落實(shí)核心素養(yǎng).
【關(guān)鍵詞】基本平面圖形;初中數(shù)學(xué);課堂教學(xué)
數(shù)學(xué)源于對(duì)現(xiàn)實(shí)世界的抽象,是研究數(shù)量關(guān)系和空間形式的科學(xué).初中數(shù)學(xué)的課程學(xué)習(xí)具有基礎(chǔ)性強(qiáng)、覆蓋面廣和發(fā)展性強(qiáng)等特點(diǎn),需要教師引導(dǎo)和鼓勵(lì)學(xué)生在生活情境中用數(shù)學(xué)的眼光觀察,在實(shí)踐操作中用數(shù)學(xué)的思維思考,在類比探究中用數(shù)學(xué)的語(yǔ)言表達(dá),繼而提高學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心,發(fā)展實(shí)踐能力和創(chuàng)新精神.基于此,筆者選取了2024年北師大義務(wù)教育階段新教材(2022課標(biāo)版)七年級(jí)上冊(cè)“基本平面圖形”的部分課堂教學(xué)案例片段,聚焦核心素養(yǎng)的發(fā)展和落實(shí),力圖讓數(shù)學(xué)課堂成為核心素養(yǎng)的孕育點(diǎn)與生長(zhǎng)點(diǎn),期待能不斷提升課堂效率,為教育教學(xué)提供參考.
1從生活情境中抽象——會(huì)用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界
案例1“線段、射線、直線”新知導(dǎo)入
1.1聯(lián)系生活實(shí)際
教師相信同學(xué)們都看過(guò)《西游記》這部經(jīng)典的電視劇.我們來(lái)欣賞一段孫悟空的精彩視頻.通過(guò)剛才的視頻,大家感受到了金箍棒的神奇.孫悟空手中的金箍棒可以抽象出什么樣的平面圖形呢?
生1形似我們之前學(xué)過(guò)的線段.
教師如果金箍棒代表一條線段,那么當(dāng)孫悟空讓金箍棒一端固定在地面一個(gè)點(diǎn),向一個(gè)方向無(wú)限伸長(zhǎng)去捅天或探海時(shí),此時(shí)的金箍棒又會(huì)形似什么圖形呢?如果向兩個(gè)方向無(wú)限伸長(zhǎng)呢?
生2金箍棒固定一端向一個(gè)方向無(wú)限伸長(zhǎng)時(shí)類似射線;而向兩端無(wú)限伸長(zhǎng),沒(méi)有端點(diǎn)限制時(shí)形似直線.
設(shè)計(jì)意圖孫悟空的如意金箍棒形象深受學(xué)生喜愛(ài),且具有豐富的文化內(nèi)涵.教師巧妙結(jié)合金箍棒可長(zhǎng)可短、無(wú)限延伸的特性,不僅引導(dǎo)學(xué)生回顧思考了小學(xué)階段關(guān)于線段、射線、直線的學(xué)習(xí)內(nèi)容,同時(shí)也是從真實(shí)情境抽象幾何圖形的過(guò)程,激發(fā)學(xué)生的學(xué)習(xí)熱情,滲透善于觀察生活中的數(shù)學(xué)的意識(shí),使學(xué)生感受到數(shù)學(xué)與生活的緊密聯(lián)系,在直觀理解的基礎(chǔ)上發(fā)展空間想象力.
1.2開(kāi)展實(shí)踐活動(dòng)
教師比喻得非常形象生動(dòng)!同學(xué)們不妨現(xiàn)在來(lái)模仿孫悟空使用如意金箍棒.
任務(wù)1在表1中分別畫出一條線段、射線和直線.
生學(xué)生動(dòng)手在表1中借助直尺完成.
任務(wù)2借助剛才的畫圖操作,結(jié)合我們?cè)谛W(xué)階段所學(xué)的知識(shí)內(nèi)容,填寫“端點(diǎn)個(gè)數(shù)”“延伸方向”“可否度量”.
生3在畫圖的過(guò)程中,線段有兩個(gè)端點(diǎn),所以線段無(wú)法延伸,但長(zhǎng)度可以度量;類似于金箍棒,線段向一個(gè)方向無(wú)限延伸時(shí)可以形成射線,向兩個(gè)方向無(wú)限延伸時(shí)可以形成直線,所以射線有一個(gè)端點(diǎn),直線沒(méi)有端點(diǎn),射線和直線都無(wú)法度量長(zhǎng)度.
設(shè)計(jì)意圖在畫圖過(guò)程中讓學(xué)生體會(huì)感知線段、射線和直線的端點(diǎn)個(gè)數(shù)、延伸方向和可否度量,為后續(xù)的課堂實(shí)施中所要研究的表示方法、性質(zhì)、基本事實(shí)等進(jìn)行鋪墊,將抽象的數(shù)學(xué)概念與生活實(shí)際相結(jié)合,激發(fā)學(xué)生的好奇心和探究欲.
1.3引導(dǎo)問(wèn)題解決
任務(wù)3小組交流討論線段、射線、直線表示方法的聯(lián)系和區(qū)別.
小組代表1線段有兩個(gè)端點(diǎn),所以可以利用兩個(gè)端點(diǎn)表示,比如線段AB,由于端點(diǎn)沒(méi)有順序要求,所以亦可稱之為線段BA;若將線段AB分別向左和向右延伸,則得到不同方向的射線,向右延伸可以表示為射線AB,而向左延伸則得到的是射線BA;當(dāng)線段向兩個(gè)方向延伸時(shí)我們就可以得到直線AB(或者直線BA),也就是說(shuō)線段和射線都是直線的一部分,它們都可以借助兩個(gè)點(diǎn)的大寫字母表示.
教師表述得很詳細(xì)!那么它們的表示方法有什么區(qū)別呢?
小組代表2我發(fā)現(xiàn)射線的大寫字母書寫順序不同,所表示的射線的端點(diǎn)和延伸方向就會(huì)不同.
教師觀察得非常全面!還有什么不一樣的地方嗎?
教師補(bǔ)充對(duì)于線段和射線,除了用兩個(gè)大寫字母,我們還可以采用一個(gè)小寫字母表示,如線段a,直線l,但射線顯然不可以使用這樣的表示方法.
設(shè)計(jì)意圖經(jīng)過(guò)小組交流與教師補(bǔ)充講解,將學(xué)生的自主學(xué)習(xí)和共同探索有機(jī)結(jié)合,從數(shù)學(xué)的角度加深學(xué)生對(duì)線段、射線、直線概念的本質(zhì)理解,引導(dǎo)學(xué)生掌握線段、射線、直線的規(guī)范性表示方法,并對(duì)比感受線段和直線表示方法的相同之處.
2在實(shí)踐操作中思考——會(huì)用數(shù)學(xué)的思維思考現(xiàn)實(shí)世界
案例2用尺規(guī)作一個(gè)角等于已知角
2.1實(shí)踐探索,感悟原理
通過(guò)之前的學(xué)習(xí),我們已經(jīng)了解借助移動(dòng)其中一個(gè)角來(lái)比較兩個(gè)角的大小的方法.但怎樣移動(dòng)一個(gè)角呢?例如,我們?nèi)绾螌D1中的∠AOB移動(dòng)到圖2中指定的位置,使得OA與O′A′重合?
動(dòng)手操作請(qǐng)嘗試借助三角尺、量角器、圓規(guī)等工具,解決上述問(wèn)題.
小組活動(dòng)以學(xué)習(xí)小組為單位交流討論選擇的工具和對(duì)應(yīng)的解決方案,由小組代表投影展示操作步驟并敘述方式方法.多數(shù)小組采用量角器,部分學(xué)生會(huì)用到三角板和直尺平移,還有個(gè)別學(xué)生代表提出構(gòu)造三角形來(lái)畫出角,等等.
直觀感知在上述操作和展示的過(guò)程中,大家認(rèn)為角的大小由什么來(lái)決定?
設(shè)計(jì)意圖鼓勵(lì)學(xué)生打開(kāi)思維,用自我設(shè)計(jì)的方法完成移動(dòng)角的任務(wù),在實(shí)踐操作中感受角的大小的決定因素.分析和解決問(wèn)題的同時(shí),直觀感悟到角的大小取決于角的“張口”,與兩邊的長(zhǎng)短無(wú)關(guān).
課堂思考怎樣刻畫角的“張口”呢?我們嘗試用橡皮筋固定在圓規(guī)兩腳底端,通過(guò)張合圓規(guī)的兩腳,來(lái)觀察圓規(guī)兩腳所形成的角度和橡皮筋的長(zhǎng)度之間的關(guān)系.
設(shè)計(jì)意圖學(xué)生觀察上述操作后可發(fā)現(xiàn),當(dāng)圓規(guī)兩腳所形成的角度變化時(shí),橡皮筋的長(zhǎng)度也隨之變化;角度越大,橡皮筋越長(zhǎng).也可以讓學(xué)生觀察用量角器度量角的過(guò)程,幫助學(xué)生理解角的大小由角的“張口”所對(duì)的線段(弦長(zhǎng))決定.引導(dǎo)學(xué)生經(jīng)歷上述探索過(guò)程,明確作角的問(wèn)題可以轉(zhuǎn)化為作相應(yīng)線段的問(wèn)題,為后續(xù)用尺規(guī)作角作鋪墊.
2.2操作交流,規(guī)范作法
實(shí)踐探索如果僅利用尺規(guī),又將如何解決這個(gè)問(wèn)題呢?
例題呈現(xiàn)已知∠AOB,用尺規(guī)作∠A′O′B,使∠AOB=∠A′O′B.
設(shè)計(jì)意圖在上一環(huán)節(jié)的基礎(chǔ)上,教師可以要求學(xué)生自主嘗試作圖.通過(guò)展示多種作法,在總結(jié)、比較的基礎(chǔ)上優(yōu)化,得到最簡(jiǎn)便的作圖方法,并以例題形式呈現(xiàn)用尺規(guī)作一個(gè)角等于已知角的規(guī)范作法.學(xué)生已掌握作一條線段等于已知線段的方式,但用尺規(guī)作圖實(shí)現(xiàn)“張口”相等時(shí)會(huì)遇到障礙,此時(shí)教師嘗試引導(dǎo)學(xué)生分析問(wèn)題的關(guān)鍵:兩線或兩弧相交得到點(diǎn).學(xué)生可能會(huì)選擇在原角的兩邊截取不同長(zhǎng)度的線段,得到與已知角相等的角,教師在鼓勵(lì)的同時(shí)繼續(xù)追問(wèn):是否有更簡(jiǎn)潔的方法?引導(dǎo)學(xué)生認(rèn)識(shí)到,作一弧在兩邊同時(shí)截取等長(zhǎng)的線段即可.
2.3自主建構(gòu),深化理解
課堂思考根據(jù)圖2,思考角的尺規(guī)作圖的步驟與量角器的使用存在什么關(guān)系.
設(shè)計(jì)意圖之前的學(xué)習(xí)中我們使用量角器測(cè)量、比較、移動(dòng)角,本節(jié)課探索用尺規(guī)作一個(gè)角等于已知角的作法,引導(dǎo)學(xué)生思考兩種工具和兩種方法的異同,將所學(xué)知識(shí)進(jìn)行結(jié)構(gòu)化整合,體現(xiàn)了單元整體教學(xué)的設(shè)計(jì),關(guān)注到數(shù)學(xué)知識(shí)的層次性與關(guān)聯(lián)性.
3從類比探究中表達(dá)——會(huì)用數(shù)學(xué)的語(yǔ)言表達(dá)現(xiàn)實(shí)世界
案例3“角(第1課時(shí))”新知導(dǎo)入
3.1真實(shí)情境
教師同學(xué)們,展示的這些關(guān)于實(shí)際生活的圖片:鐘表以及旋轉(zhuǎn)的扇子等,都展示了什么樣的形象?
生1它們都展現(xiàn)出了角.
教師小學(xué)階段我們接觸過(guò)“角”嗎?都學(xué)過(guò)它的哪些相關(guān)內(nèi)容呢?
生2角由一個(gè)頂點(diǎn)和兩條邊組成.
生3常見(jiàn)的角有銳角、直角和鈍角.
教師回答得很詳細(xì),我們今天就在此基礎(chǔ)上繼續(xù)探究學(xué)習(xí)角的相關(guān)內(nèi)容.
設(shè)計(jì)意圖用生活中熟悉的情境吸引學(xué)生的注意力,抽象出幾何圖形,引導(dǎo)學(xué)生概括共同屬性的過(guò)程中,激發(fā)他們的好奇心.
3.2方法類比
教師請(qǐng)同學(xué)們回顧之前在線段的學(xué)習(xí)中,我們都探究了哪些內(nèi)容?
生4我們研究過(guò)線段的定義、表示方法、性質(zhì)、度量、比較大小等.
教師類比線段的學(xué)習(xí)內(nèi)容,我們猜想一下將從哪些方面展開(kāi)對(duì)角的探究呢?
生5從角的定義、表示方法、度量、畫法、性質(zhì)、比較大小與運(yùn)算等方面展開(kāi).
設(shè)計(jì)意圖將角和線段進(jìn)行類比探究,在實(shí)踐中深化理解數(shù)學(xué)概念,構(gòu)建同主題下知識(shí)傳遞的橋梁,培養(yǎng)學(xué)生的觀察力和自主發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的能力,助其逐步養(yǎng)成用數(shù)學(xué)的語(yǔ)言表達(dá)現(xiàn)實(shí)世界的習(xí)慣.
4結(jié)語(yǔ)
數(shù)學(xué)教育承載著落實(shí)立德樹人根本任務(wù).在今后的教學(xué)中,教師需要以核心素養(yǎng)提升為教學(xué)實(shí)施目標(biāo),讓學(xué)生用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界時(shí)可以發(fā)現(xiàn)和提出問(wèn)題,用數(shù)學(xué)的思維思考現(xiàn)實(shí)世界時(shí)會(huì)分析問(wèn)題,用數(shù)學(xué)的語(yǔ)言表述現(xiàn)實(shí)世界時(shí)能解決問(wèn)題,在主題整合的知識(shí)建構(gòu)下,拓寬學(xué)生的數(shù)學(xué)思維與視野,培養(yǎng)學(xué)生形成科學(xué)的邏輯思維習(xí)慣.
參考文獻(xiàn):
[1]史寧中.數(shù)學(xué)基本思想18講[J].基礎(chǔ)教育課程,2016(23):2.
[2]陳通順.數(shù)學(xué)抽象:“學(xué)科眼光”培育的根本性策略[J].新教育,2024(32):50-52.