中圖分類號:069 文獻標志碼:A
Research Progress on High Performance, Sustainable and Functional Properties of Benzoxazine Resins
XIELin,LUYin,YAO Zhenhao,SHENGWeichen,ZHANGKan (Institute of Polymer Materials, School ofMaterials Science and Engineering,Jiangsu University, Zhenjiang212013, Jiangsu, China)
Abstract:Benzoxazineresins,asanovel class ofthermoseting polymer materials,have garnered significant atention from bothacademiaandindustryduetotheiruniquestructuraldesignability.Withtherapidadvancementsinhigh-end technological fieldsand thecontinuous enhancementof environmental awarenessamong humans,the future development trendofbenzoxazineresins isinevitably groundedin highperformanceandmultifunctionalitywithapredominantfocuson sustainability. Our research team insist on the novel synthetic approach to benzoxazine molecules,aiming to explore the relationship between the molecular structure,thecuring mechanisms of thermoseting resin monomersand the resulting material properties through the design and regulationof molecular structures and hydrogen bonding.We innovate highperformance benzoxazine resin systems,develop methods for optimizing the performanceof sustainable bio-based thermosetingresins,andfabricatenewbenzoxazine-basedfunctionalmaterials.Thispaperreviews therecent progresmade byourteam inthehigh-performanceenhancement,greening,and functionalizationof benzoxazineresins,whilealso projecting future research directions for this field.
Key words: benzoxazine resin; high performance; functional application; bio-based; molecular design
為了滿足電工電子和航空航天等先進技術領域的特殊需求,研究者們對高性能材料的開發日趨重視。熱固性樹脂因其質輕和效優而被認為是高性能聚合物材料基體必要的候選之一。聚苯并噁嗪(PBZ)樹脂作為一種較為新型的熱固性樹脂,由苯并噁嗪單體熱開環固化得到,具有較高的熱穩定性[1-4]、可調控的力學性能[5.6]、突出的阻燃性[7.8]、較低的表面自由能[9,10]、低介電常數[11-13]、固化過程中近零收縮性[14,15]、低吸水性以及良好的黏附性[12,16,17]等諸多優點,可應用于航空航天、電工電子、涂料和黏合劑等眾多技術領域[18](圖1),被視為傳統環氧類、雙馬來酰亞胺類和酚醛類樹脂的有力替代品[19]。然而,苯并噁嗪樹脂依然存在高固化溫度、低交聯密度、質脆低韌以及合成原料化石基來源(煤炭、石油、天然氣)占比大的弊端。幸運的是,苯并噁嗪具有靈活的分子結構設計性[20-22],可通過自然界中廣泛存在的生物基酚類(如丁香酚[23,24]、腰果酚[25]、愈創木酚[26,27])、生物基胺(如糠胺[28]、硬脂胺[29]、脫氫樅胺[30])和生物基醛(如糠醛和水楊醛[31)的獨特化學結構來調控固化后樹脂的性能。然而,開發性能優于普通化石基苯并噁嗪樹脂的生物基聚苯并噁嗪熱固性材料仍然是一個巨大的挑戰。本團隊在苯并噁嗪領域深耕多年,通過設計新型化學結構以及構筑苯并噁嗪分子內氫鍵,在引人不同功能基團的基礎上深人探究了苯并噁嗪樹脂的構效關系,進一步采用可再生原料合成了新型生物基苯并噁嗪樹脂,開發了一系列潛伏催化固化與本征阻燃型生物基樹脂,還通過苯并噁嗪樹脂的功能化來拓展其在復合材料、潤滑油等領域的新應用。
圖1聚苯并噁嗪樹脂的合成及其應用Fig.1Synthesis and application of PBZ resin
本文綜述了團隊近年來在苯并噁嗪樹脂高性能化、綠色化與功能化三方面的工作,具體包括:高性能鄰位酰胺/酰亞胺苯并噁嗪的開發;生物質黃酮和香豆素基苯并噁嗪樹脂的合成、固化機理與性能研究,尤其詳細介紹了分子內氫鍵的調控機制和潛伏自催化固化機理;以苯并嚏嗪為基體制備石墨烯材料,并研究其在熱傳導、電磁屏蔽和摩擦等領域的應用。
1高性能苯并噁嗪樹脂
苯并噁嗪樹脂作為一類極具價值的高分子材料,其獨特的分子骨架和可靈活調節的功能基團配置,賦予了材料多變的性能水平。通過對合成原料的精心篩選和對苯并噁嗪結構中取代基的相關改性,可以實現對該材料物理化學性能的精確調控,從而滿足多樣化的應用場景需求。在苯并噁嗪樹脂的開發過程中,分子設計發揮著核心作用,這是因為分子設計不僅能夠塑造樹脂的網絡結構,還影響著樹脂的固化行為以及固化后材料的熱學行為和力學特性等。如何通過巧妙的分子設計,彌補苯并噁嗪樹脂性能上的短板,合成兼具低固化溫度(易加工)和高熱穩定性(高性能)的苯并噁嗪樹脂已然成為當前研究的重點。針對這一挑戰,本團隊以引人耐熱基團為切入點,設計合成了以鄰位酰胺結構、鄰位酰亞胺結構為代表的高性能苯并噁嗪熱固性樹脂新體系。
1.1鄰位酰胺官能化苯并噁嗪樹脂
鄰位酰胺官能化苯并噁嗪是由引入了鄰位酰胺基團的酚與胺及醛發生曼尼希縮合反應生成[32],典型結構如圖2(a)所示。鄰位酰胺基團與噁嗪環中的氧原子相鄰,致使酰胺基團中的NH與噁嗪環中的O形成分子內氫鍵(圖2(b)),而酰胺基團若在嘎嗪環對位只能形成分子間氫鍵。這一獨特結構促使鄰位酰胺苯并噁嗪在熱固化過程中能夠在較低溫度下實現開環聚合,且無需添加引發劑或催化劑[33]。密度泛函理論(DFT)的有關計算與實驗闡釋了鄰位與對位酰胺官能化苯并噁嗪單體的分子結構差異。計算結果表明,分子內氫鍵的存在顯著降低了 O-CH2 鍵的總電子密度,進而降低了該鍵的鍵能,使鄰位酰胺苯并噁嗪更容易發生熱開環聚合。實驗表征進一步表明,在差示掃描量熱(DSC)測試中,相較于對位異構體,鄰位酰胺苯并嘌嗪的熱開環固化峰值溫度 (Tp) 降低約 40% ,且基于Starink法計算得到的活化能也更低[34]。含有噻吩基團的鄰位和對位酰胺苯并噁嗪單體中,噻吩中硫元素可以競爭調控NH與噁嗪環中的O形成分子內氫鍵鍵能,對其分子內可能形成的各種氫鍵(包括分子內五元環、六元環氫鍵以及分子間氫鍵)強度的計算結果(圖2(c))進一步證明,酰胺鍵中的NH與噁嗪環中的O形成的分子內氫鍵越強,相應苯并嘌嗪的聚合溫度越低[35]。
圖2(a)典型的鄰位酰胺型苯并嘌嗪結構式;(b)鄰位酰胺苯并嘌嗪(oHBA-a)形成分子內氫鍵,對位酰胺苯并噁嗪(pHBA-a)形 成分子間氫鍵[33];(c)富含噻吩基團的苯并嘌嗪中可能形成各種氫鍵的強度對比[35] Fig.2(a)Typicalstructuralfulaeoftoamidetypebenzoxaie;(b)ItraolelardrogenbdginBA-aditeolular hydrogen bonding in pHBA a[33] ; (c) Qualitative strength of hydrogen bonding in thiophene rich benzoxaiznes[35]
此外,鄰位酰胺型苯并嚏嗪在后固化階段,酚羥基和其鄰位酰胺基團之間會發生分子內熱環化反應,脫去水分子形成苯并噁唑環貫穿于樹脂網絡結構中(圖3(a))[32],不但熱穩定性進一步提升,介電性能也得到優化。基于鄰位酰胺苯并嘌嗪的苯并噁唑熱環化反應并結合苯并噁嗪靈活的分子設計性,將多種功能基團引入鄰位酰胺苯并噁嗪單體可以實現性能調控:(1)引人三氟甲基使樹脂的介電常數 (εr) 降至 2.42~2.19 ,介電損耗(tan δ 降至 0.012~0.008 ,而玻璃化轉變溫度 (Tg) 高達 354°C ,且熱穩定性顯著提升,質量損失 5% 溫度(Td5) 和 10% 質量損失溫度( (Td10) 分別達到 417°C 和 512°C[36] ;(2)引入炔基可在聚合過程中環化形成苯環從而改善綜合性能,樹脂的介電常數降至 2.55~2.31 ,介電損耗降至 0.008~0.004 ,且 Td10 為 445°C,800°C 下的殘碳率 (Yc) 為 66%137] ;(3)引入乙烯基可以與硅氧烷發生硅氫加成反應進而制備含硅氧烷鏈的主鏈型苯并噁嗪樹脂,結合苯并噁唑熱環化處理,樹脂也展現出優異的介電性能(介電常數為 2.52~2.13 ,介電損耗為 0.056~ 0.008)和熱穩定性( Tg 高達 400°C , Td10 為 4459C )(圖3(b))[38]。以上結果表明,鄰位酰胺苯并噁嗪在賦予樹脂單體低固化溫度的同時,能進一步通過后固化過程苯并噁唑化提升樹脂的綜合性能。該系列樹脂在電子封裝領域展現出良好的應用潛力。
圖3(a)鄰位酰胺苯并噁嗪的熱固化機理[32l;(b)含三氟甲基、炔基和硅氧烷的鄰位酰胺苯并嘌嗪的結構式
Fig.3(a)Tealcurigmechanisofrtamdebzoaie32;truturalfulaeofoAmdebzoxaziwithrfoeth alkynyl and siloxane functionalities
1.2鄰位酰亞胺官能化苯并噁嗪樹脂
本團隊首次觀察到鄰位酰亞胺型苯并噁嗪中的噁嗪環負電荷氧原子與酰亞胺功能團之間存在分子內排斥作用,從而導致C-N鍵旋轉受抑制而產生阻轉異構,該異構體特征在核磁共振(NMR)測試中得到充分驗證,在DFT計算中也有體現(圖4(a))[39]。本團隊進一步合成了多種具有阻轉異構特征的鄰位酰亞胺型苯并噁嗪單體,并通過DFT模擬計算對其空間結構進行了深入研究(圖4(b))[40]。
鄰位酰亞胺型苯并噁嗪樹脂經固化后同樣可進一步后固化形成聚苯并噁唑樹脂。然而,鄰位酰亞胺進行苯并噁唑熱環化的機理與鄰位酰胺苯并噁嗪有所差異[41:酰亞胺基團會先與苯并嘌嗪開環生成的酚羥基反應,釋放出二氧化碳分子,進而形成苯并噁唑基團(圖4(c)),且該反應溫度顯著高于鄰位酰胺苯并噁嗪樹脂的后固化溫度。
此外,引人包括馬來酰亞胺[42-45]、降冰片烯[4,43,46-51]、炔基[4,52]、氰基[47,3,54]、鄰苯二甲腈[51,55]、環丁烯[46]等具有交聯反應活性的基團到苯并嚏嗪單體結構中,樹脂的熱學和力學性能進一步提高。以降冰片烯和炔基同時引入鄰位酰亞胺苯并噁嗪單體為例,炔基有效降低了單體的固化溫度,降冰片烯則顯著提升了樹脂的交聯密度(圖4(d)),最終獲得的高性能樹脂具有 250qC 的 Tg 和 4589C 的 Td10[4] 。
綜上,鄰位酰胺和鄰位酰亞胺型苯并噁嗪樹脂以及相應的后固化得到的聚苯并噁嗪的性能數據均匯總于表1中。
2生物基高性能苯并噁嗪熱固性樹脂
當前,化學工業的原料大多源于化石基資源。化石基資源不僅面臨枯竭的困擾,還給生態環境造成破壞。因此,為推動高性能苯并噁嗪熱固性樹脂朝著可持續方向發展,借助第四代化工路線的生物質平臺化合物來制備苯并嚏嗪樹脂刻不容緩。在生物基苯并嚏嗪樹脂的開發過程中,原料的篩選與分子設計至關重要。通常,相較于脂肪族原料,采用酚和芳香族或類芳香族胺合成的苯并噁嗪樹脂在性能上更具優勢。基于上述認知,本團隊系統開展了生物基高性能苯并噁嗪樹脂的研究工作。
2.1黃酮類生物基苯并噁嗪樹脂
黃酮類化合物是一類廣泛存在于藍莓、蔬菜、茶葉、香料以及豆制品中的有機酚化合物[56-59],按結構可分為二氫黃酮(如橙皮苷和柚皮素(NAR))、黃酮醇(如槲皮素和山奈酚)、黃酮(如芹菜素(API)和木犀草素)、異黃酮(如大豆素和染料木素)以及花色素(如飛燕草素和芍藥素)[60]。該類化合物含有一種類似于脫氧安息香的獨特化學結構,能夠在燃燒中迅速碳化成致密的碳層,因此有助于提升苯并噁嗪樹脂的熱穩定性和阻燃性[61]。此外,黃酮類化合物結構中含有羥基、羰基、醚等基團,不僅具有構建氫鍵的潛力,還賦予其抗菌、抗炎、抗病毒、抗氧化等多種生理活性,在醫學和健康領域有著廣闊的應用前景[62-65]。
圖4(a)鄰位酰亞胺苯并噁嗪的阻轉異構機理[39l;(b)多種含有阻轉異構構象的鄰位酰亞胺苯并嘌嗪單體[40];(c)鄰位酰亞胺苯 并嘌嗪的固化與后固化行為[41l;(d)含有降冰片烯和炔基的鄰位酰亞胺苯并噁嗪樹脂[4] Fig.4(aMechsmoftroomezatiothideeoe39l;(ierettysoftdebezaeatos; (c)Curingandpostcurigbhaviorofortoamidebenzoxazine41]; (dorth-midebenzoxaziecontainingnorboeneandaky4]
基于黃酮類化合物的特點,本團隊首先以二氫黃酮類三酚——柚皮素為酚源合成了生物基苯并噁嗪單體(NAR-fa),研究表明柚皮素中的羰基可與其鄰位羥基形成穩定的分子內氫鍵,賦予該苯并嚏嗪潛伏自催化固化的特性,固化溫度低至 166°C ;將其作為改性劑添加到商業化雙酚A型苯并噁嗪及白藜蘆醇基苯并噁嗪樹脂中,可顯著降低樹脂固化溫度,同時有效提升樹脂的耐熱性與阻燃性[6]。鑒于芹菜素與柚皮素結構相似且兼具碳碳雙鍵及分子內氫鍵的特征,將芹菜素與糠胺(fa)合成了新型全生物基雙苯并嚏嗪(API-fa)[67]。苯并吡酮和API-fa中的碳碳雙鍵以及呋喃環能夠形成額外的交聯網絡,可顯著提高生物基苯并噁嗪聚合物的熱性能和阻燃性能:其 Tg 高達 376°C ,在 800°C 下的殘碳率 (Yc) 為 66% ,微型量熱燃燒法(MCC)測試數據顯示該材料的放熱速率(HRR)僅為 20.2J/(g?K) ,總釋放熱(THR)為 9.4kJ/g 。研究表明,基于白楊素(CHR)制備的生物基聚苯并噁嗪中存在顯著的分子內氫鍵作用[8],特別是 OH…N 鍵可以保護 -OH 基團不與水相互作用,使聚合物涂層展現出優異的疏水性[6.70]。本團隊另一項研究表明,白楊素與炔胺合成的生物基苯并噁嗪作為綠色添加劑具有顯著優勢:可以有效降低環氧樹脂和雙馬來酰亞胺體系的聚合溫度,同時提升其熱穩定和阻燃性能[71]。作為一種結構獨特的黃酮類化合物,山奈酚(KAE)與芹菜素相比具有顯著差異:其4個羥基中有2個與酮基相鄰且其中一個為非酚羥基,與糠胺結合后會形成五元或六元氫鍵環,進而合成富含氫鍵的苯并嘌嗪樹脂。基于該樹脂基體制備的碳纖維增強復合材料展現出優異的性能,與化石基苯并噁嗪復合材料相比,其 Tg 、抗拉強度和楊氏模量分別提提升 108% 1 28% 和 82.7% ,在交通運輸和航空航天領域顯示出巨大的應用潛力[72]。本團隊最近以7-羥基黃酮(HYD)、白楊素、芹菜素、木犀草素(LUT)等合成單、雙以及三官能苯并噁嗪單體,探究了噁嗪環數量和氫鍵對聚合物固化機理和熱性能的影響,進一步證明含有分子內氫鍵的黃酮基苯并噁嗪具有潛在的自催化作用,從而能夠降低固化溫度,且其固化溫度與苯并噁嗪單體中噁嗪數量成反比[73]。典型的含分子內氫鍵的黃酮基苯并噁嗪單體的結構和相應的潛伏催化固化機理如圖5所示,相關的熱性能與阻燃性能數據匯總于表2。
表1鄰位酰胺和鄰位酰亞胺聚苯并噁嗪和聚苯并嘌唑的熱性能與介電性能
Table1Thermalanddielectric propertiesofortho-amide andortho-imidepolybenzoxazine and polybenzoxazol
圖5(a)含分子內氫鍵的黃酮基苯并嘌嗪單體結構示意圖;(b)以山奈酚基苯并嘎嗪單體為例的分子內氫鍵潛伏催化固化機理[72] Fig.5(a)Structuraldiagramofflavonoid-basedbenzoxazinemonomerscontainingintramolecularhydrogenbond;(b)ntramolecular hydrogen bond latent catalytic curing mechanism of kaempferol-based benzoxazine monomer[72]
表2黃酮基苯并噁嗪樹脂的熱性能與阻燃性能
Table 2Thermal properties and flame retardancy of flavonoid-based benzoxazine resins
2.2香豆素類苯并噁嗪樹脂
存在于種子、根和葉的次生代謝物中的香豆素及其衍生物是用于制備熒光化學傳感器[74]和防污涂料[55]等高分子材料的家族型天然化合物,4-甲基-7-羥基香豆素[75,76]和7-羥基香豆素[77]合成單官的苯并噁嗪樹脂的相關研究工作此前也有報道。Sini等[78研究表明,相比于雙官或者多官的苯并噁嗪樹脂,單官的苯并噁嗪樹脂往往交聯密度低,存在大量的結構缺陷,故而在熱穩定性方面稍遜一籌。本團隊以秦皮乙素(6,7-二氫香豆素)制備了雙官生物基苯并噁嗪單體,經高溫固化后形成的樹脂體系交聯密度增大, Tg 可以達到 261‰ ,熱穩定性得到顯著提升( Td10 和 Yc 分別為 407‰ 和 57%[79] ),而且新獲得的苯并噁嗪樹脂在無鹵、無磷的條件下也表現出UL-94V-0 級別的優異阻燃性,尤其最高HRR僅為 2.51J/(g?K) (圖6(a))。此外,二氫香豆素憑借異常靈活的分子設計能力與酪胺制得了生物基雙苯并噁嗪[80]。該方法不僅簡單環保,而且得到的富含氫鍵的生物基聚苯并噁嗪具有優異的熱穩定性,其黏附強度(圖6(b))和低表面能特性也極為出色。此外,含香豆素的苯并噁嗪在 365nm 波長紫外光照下能誘導產生 [2π+2π] 環加成反應,產生新的光聚體(圖6(c)),進而增強材料的耐熱性能[81]。
圖6香豆素類苯并噁嗪樹脂優異的(a)阻燃性[79],(b)黏附強度[80]以及(c)光、熱固化機理[81]Fig6Excelnt(a)eretadntl,siogthndlgt,talrigmhnisofouriois
3苯并噁嗪樹脂的功能化應用
近年來,研究者們已成功開發了一系列適用于不同領域的功能性苯并噁嗪材料,涵蓋阻燃材料[3]、抗菌材料[82]、高效碳吸附材料[83]以及高性能摩擦材料[84]等。
3.1苯并噁嗪/石墨烯復合材料
聚苯并噁嗪本身存在脆性高、電絕緣性強以及熱傳導性能差等問題[85-87],因而僅依靠調控苯并噁嗪單體結構和聚合方法難以滿足其在導電、導熱等應用中的性能需求。目前,通過化學或物理手段將相應功能性納米材料引入苯并噁嗪基體以構筑復合材料,是一種提升其傳導性能的有效途徑。
受到磚泥結構的啟發,本團隊在一種含有鄰位酰胺結構單體的基礎上引入呋喃基團增強基體與石墨烯之間的結合力,即利用呋喃官能團中的共軛二烯與石墨烯上的碳碳雙鍵發生Diels-Alder反應并通過真空過濾技術實現石墨烯與苯并嘎嗪復合材料的有效組裝,成功制備出如圖7(a)所示的層狀結復合薄膜,幾乎每一層石墨烯均平行于復合薄膜片材的表面,且相鄰石墨烯層沿面內方向呈現高度取向性[83]。這種排列方式顯著增大了接觸面積,同時固化后聚合物支撐的石墨烯結構促進了致密網絡的形成,為聲子傳播提供了低熱阻路徑,極大地提升了熱傳導效率。含有鄰位酰胺結構的苯并噁嗪化合物在熱活化固化過程中能夠發生獨特的結構重排,生成具有較低介電常數和損耗因子的聚苯并噁唑[44],顯著增強聚合物基質的剛性(圖7(b))。當石墨烯質量分數僅為 46.8% 時,復合薄膜的面內熱導率可高達 39.2W/(m?K) ,顯著優于純苯并噁嗪樹脂的熱導率 (0.31W/(m?K)) 。此外,復合薄膜還具有優異的電磁屏蔽性能,層層堆疊的石墨烯片顯著增強了電磁波的層間反射,而致密的磚/砂狀微觀結構則大幅提升了材料的有效表面積,從而構建了一道高效的電磁波屏障(圖7(c)),因此,聚苯并噁嗪/石墨烯薄膜展現出高達 1.04dB/μm 的電磁干擾(EMI)屏蔽效率。
圖7基于真空過濾的聚苯并噁嗪/石墨烯導熱復合材料:(a)復合材料薄板的導熱系數;(b)后固化過程中聚苯并嘌嗪結構到聚 苯并嘎唑結構的轉換;(c)EMI屏蔽機理[83] Fig.7Polybezoxazierapnetealconductivityompositebasdonvacmfiltratio:(a)ealcoductivityofcompoitet; (b)Conversion ofpolybenzoxazine structure to polybenzoxazole structure during postcuring;(c)EMI shielding mechanism[83]
聚苯并噁嗪/石墨烯薄膜經進一步熱處理后,聚苯并噁嗪成功完成了結構重排并轉變為高度共軛的聚苯并噁唑[83]。這一轉變顯著增強了聚合物與石墨烯之間的 π-π 相互作用,從而使復合薄膜的面內熱導率從39.2W/(m?K) 進一步提升至 47.8W/(m?K) 。此外,該轉化過程中形成了更密集交聯的網絡結構和更小的石墨烯層間距,這種結構變化不僅強化了電磁波的反射與散射效應,而且顯著提高了能量損耗,實現了更高的電磁屏蔽性能,從而使得聚苯并噁唑/石墨烯薄膜的電磁干擾屏蔽效率進一步提升至 1.19dB/μm 。
3.2苯并噁嗪基激光誘導石墨烯
隨著機械系統對能效和耐用性的要求不斷提高,越來越多的潤滑劑被應用于減少摩擦和磨損。潤滑劑的應用不僅可以顯著提高機械系統的能源利用效率,還能有效延長部件的使用壽命。石墨烯材料因其獨特的低摩擦特性和優異的抗磨損性能而備受關注,其高導熱性能夠快速散失滑動產生的熱量,從而進一步提升系統的穩定性。然而,對于油基潤滑劑而言,如何在無需復雜化學改性的前提下實現超細碳質顆粒的良好分散仍然是一個亟待解決的問題。
在此背景下,本團隊通過“激光直寫技術\"直接在聚合物表面制備得到三維多孔石墨烯碳材料激光誘導石墨烯(LIG),基本實現從生物質碳化合物到生物基苯并噁嗪,再到功能性碳材料轉變的路徑探索(圖 8(a,b))[84] 目前,已有大量關于利用苯并噁嗪樹脂制備LIG的研究報道,這些研究主要集中在光熱材料、超疏水材料和電磁屏蔽材料等領域的應用[889]。本團隊首次探討了此類LIG在摩擦材料中的潛在應用[90],所得的LIG具有獨特的三維多孔結構和疏水表面(圖8(c)),與未經改性的其他碳基潤滑劑添加劑(如氧化石墨烯、單壁碳納米管、炭黑和還原氧化石墨烯)相比展現出更優的分散性能,將 w=0.1% 的LIG添加到聚 a 烯烴基礎油(PAO4)中時,PAO4的摩擦系數降低了約 22% ,磨損率系數降低了約 95% ,同時實現了優異的減摩和抗磨效果。然而,在聚合物基底前驅體上形成LIG,將會極大地限制其在實際應用中幾何形狀和尺寸的可控性。因此,本團隊還基于液體生物基苯并噁嗪單體通過高能激光的光熱效應有效促進苯并噁嗪表面C一O和 c-N 鍵的斷裂,實現碳原子重新排列進而生成一種3D多孔LIG潤滑添加劑[90]。與聚合物基底類似,由液體單體制備的LIG表面展現出豐富的多孔結構和褶皺特征(圖8(d))。LIG參與了邊界潤滑膜的形成,顯著縮短了磨痕的寬度和深度。當 w(LIG)=0.5% 時,PAO4潤滑劑的平均摩擦系數和磨損率比未添加LIG時分別降低了 52% 和 97% 。即使摩擦時間延長一倍,PAO4/LIG潤滑劑仍表現出穩定的減摩抗磨性能,充分體現了三維多孔LIG作為潤滑添加劑的長壽命特性。
圖8基于苯并嘎嗪激光誘導的石墨烯:(a)從生物碳資源向功能碳材料的轉化[84];(b)LIG的制備;(c)基于聚苯并嚏嗪的LIG;(d)基于液體生物基苯并嘌嗪單體的LIG[90]
Fig.8Laser-ducedgraeebasedonbezoxaie:(a)ransfoationfrobiologicalcarbonsoucs tofunctioalcarbomteal; (b)Preparation of LIG; (c)LIG based on polybenzoxazine; (d)LIG based on liquid bio-based benzoxazine monomer[90]
總結與展望
本文全面綜述了團隊近十年來在高性能苯并噁嗪樹脂領域的探索與部分研究成果。通過靈活設計的分子結構構筑分子內氫鍵,成功制備出兼具低溫固化、高熱穩定性、阻燃性及介電性能優良的苯并噁嗪熱固性樹脂。基于黃酮類和香豆素類生物質合成生物基苯并噁嗪樹脂新體系,更是推動苯并噁嗪樹脂朝著高性能、可持續發展方向邁進了關鍵一步。此外,苯并噁嗪與石墨烯形成的復合材料在熱傳導、電子屏蔽和潤滑劑等多功能領域也取得顯著進展,而采用激光燒蝕的方法,成功實現了從樹脂到功能性碳材料的轉變。
盡管高性能苯并噁嗪樹脂已取得一些重要突破,但其大規模商業化仍面臨諸多挑戰,需在分子設計、原料來源、功能化應用、工業化生產及樹脂回收再利用等方面進行持續探索與優化。具體可優化方面如下:(1)分子設計優化,深人研究樹脂構效關系,精準調控分子結構與氫鍵,進一步優化固化溫度、熱穩定性等關鍵特性,滿足航空航天、電工電子等高端領域的嚴苛要求;(2)綠色可持續發展,拓展生物質原料的來源,提升苯并嚏嗪樹脂中生物基含量,突破性能瓶頸,實現對石油基產品的有效替代,推動行業可持續發展;(3)功能化應用,持續優化與功能性納米材料的復合技術,探索功能材料制備新工藝,拓展其在諸如新能源、生物醫學等前沿領域的應用;(4)工業化推進,著力攻克量產技術難題,提高生產效率,降低成本,加速科研成果轉化,讓高性能苯并嚏嗪樹脂在各領域發揮更大價值,為材料科學發展注入新活力;(5)回收再利用,在苯并噁嗪結構中引入特定可逆鍵實現可控降解,在保持高性能的同時,實現特定條件下的降解和再生利用。
綠色與可持續發展是苯并噁嗪樹脂未來發展的主旋律,而高性能和多功能是苯并噁嗪發展的基石。不斷總結苯并噁嗪化合物的結構特征并與性能關聯,針對應用目標設計合成功能性的高性能苯并噁嗪樹脂,并實現特定條件下的降解與再利用,將助力推動苯并嘌嗪樹脂的快速發展。
參考文獻:
[1] GOTO M,MYAGIY,MINAMIM,MNAMI M,SANDAF.Synthesis andcrossinkingreactionof polyacetylenes substituted with benzoxazinerings:Thermalyhighlystablebenzoxazineresins[J].JoualofPolymerSciencePartA:PolymerChemistry,2018, 56(16):1884-1893.
[2] LIU Y Q, YUANL,LIANGGZ, GUAJ reparationof thermally resistant and mechanicallystrong biomassbenzoxazinersins via green strategy [J].ACS Sustainable Chemistry and Engineering,2024,12(3):1247-1254.
[3] YANG Y,LUY,ZHANG K.Ahigly thrmallstable benzoxazine resinderived from norbonene andnatural renewabletyamine and furfurylamine [J]. European Polymer Journal,2023,187: 111895.
[4] ZHANGK,YUX.Catalyst-freeandlow-temperature terpolymerizationinasingle-componentbenzoxazineresincontainingboth norbornene and acetylene functionalities [J].Macromolecules,2018,51(16): 6524-6533.
[5] CAO JF,DUAN H J, ZOUJH,ZHANG JJ,WANC,ZHANG CH, MA H R. Bio-based phosphorus-containing benzoxazine towardshigh firesafetyheatresistanceand mechanical propertiesofanhydride-curedepoxyresinJ].PolymerDegradationand Stability,2022,198:109878.
[6] ZEGAOUI A, DERRADJI M, MA R K, CAI W A, LIU W B, WANG J, DAYO A Q,SONG S, ZHANG L L. High-perforance polymericmaterials with greatlyimproved mechanicalandthermalproperties fromcyanateester/benzoxazineresinreinforced by silane-treated basalt fibers [J]. Journal of Applied Polymer Science,2018,135(21): 46283. networks [J].ACS Sustainable Chemistry and Engineering,2018,6(1): 389-402.
[8]LIU J,SAFRONAVA N,LYONRE, MAIA J,ISHDA HEnhanced thermal propertyandflame retardancy via intramoleular 5-membered ring hydrogenbond-formingamide functionalbenzoxazineresins[J].Macromolecules,2018,51(23):998-9991.
[9] CHEN K C, LI H T,HUANG S C, CHEN W B, SUN K W,CHANG F C. Synthesis and performance enhancement of novel polybenzoxazines with low surface free energy [J]. Polymer international, 2011, 60(7): 1089-1096.
[10] WANG C F, SU Y C, KUO S W, HUANG C F, SHEEN Y C, CHANG F C. Low-surface-free-energy materials based on polybenzoxazines [J]. Angewandte Chemie: Intermational Edition,2006,45(14): 2248-2251.
[11] CHEN J, ZENG M,FENG Z,PANG T,HUANG Y, XU Q. Design and preparation of benzoxazine resin with high-frequency low dielectric constants and ultralow dielectric losses [J].ACS Applied Polymer Materials,2019,1(4): 625-630.
[12] WU J B,XI Y, MCCANDLESS G T, XIEY H, MENON R, PATEL Y, YANG D J,IACONO S T,NOVAK B M. Synthesis and characterizationofpartiallfluorinated polybenzoxazineresinsutilizing octafluorocyclopenteneasaversatilebuildingblock[J]. Macromolecules,2015,48(17): 6087-6095.
[13]ZHANGK,YUX,KUOSW.Outstanding dielectricand termal properties of mainchain-typepoly(benzoxazine-co-iide-cosiloxane)-based cross-linked networks [J].Polymer Chemistry,2019,10(19): 2387-2396.
[14]HANL,SALUMML,ZHANGK,FROMOWICZP,IHAH.rsic slf-itiatingthealrig-opeingpolymeratiof1,- benzoxazines without the influenceofimpuritiesusingvery high puritycrystals[J].Joumal of Polymer Science PartA:Polymer Chemistry,2017,55(20): 3434-3445.
[15]ISHA H,LOWHYAstudyon te volumetric expansioofbenzoxazine-basedphenolicresin[J].Macromolecules,199730(4): 1099-1106.
[16] HIGGINSON C J, MALOLLARI K G, XU Y, KELLEGHAN A V, RICAPITO N G, MESSERSMITH P B. Bioinspired design provideshigtrengthzoxaiestructuralesies[J].AngewandteChemiIteatioalEditio,19,58(35):19204.
[17] ISHIDAH,ALLENDJPhysicaland mechanicalcharacterizationof near-zero shkage polybenzoxazines[J].JoualofPolmer Science Part B: Polymer Physics,1996,34(6): 1019-1030.
[18] SONG J,LIANG H,CAOY,WANGM,WANG Z.Advancing coatings withpolybezoxazines: Isightsintomolecularesign, synthesis,and modification [J]. Journal of Materials Chemistry C,2024,12(25): 9094-9111.
[19]LOCHAB B, MONISHA M, AMARNATH N, SHARMA P, MUKHERJEE S, ISHIDA H. Review on the acelerated and lowtemperature polymerizationofbenzoxazineresis: Additionpolymerizable sustainablepolymers[J].Polymers,2O21,3(8):1260.
[20]ISHIDA H,FROIMOWICZ P.Advanced and Emerging Polybenzoxazine Sience and Technology [M].Amsterdam,Netherlands: Elsevier,2017.
[21]MACHADO I,SHAER C,HURDLE K,CALADO V, ISHIDA H. Towards the development of green flame retardancyby polybenzoxazines [J].Progress in Polymer Science,2021,121:101435.
[22]NNG X,ISHDAHPhenolicmaterialsviaing-opening polymerzation:Synthesisandcharacterizationof bisphenol-Abased benzoxazines and their polymers [J].Jourmal of Polymer Science PartA: Polymer Chemistry,1994,32(6):1121-1129.
[23]AMARATHNHUKLAS,LOCHABB.Harvestingthenftsoferenteactivefuctionalitiesinfullooudoc benzoxazines [J].ACS Sustainable Chemistry amp; Engineering,2018,6(11): 15151-15161.
[24] DUMAS L, BONNAUDL,OLIVIER M, POORTEMAN M,DUBOIS P. Eugenol-based benzoxazine: From straight synthesis to taming of the network properties [J]. Jourmal of Materials Chemistry A,2015,3(11): 6012-6018.
[25] THIRUKUMARAN P, SATHIYAMOORTHI R, SHAKILA PARVEEN A, SAROJADEVI M. New benZoXazines from renewable resources for green composite applications [J]. Polymer Composites,2016,37(2): 573-582.
[26]CHONGA M,SALAZARSA,STANZIONEIIJF.Multifunctionalbiobasedbenzoxainesblended withanepoxyresinfouable high-performance properties [J].ACS Sustainable Chemistry amp; Engineering,2021,9(17): 5768-5775.
[27] TREJO-MACHIN A,ADJAOUDA,PUCHOTL,DIEDEN R, VERGE P.Elucidating the themal and polymerization behaviours of benzoxazines from lignin derivatives [J]. European Polymer Journal,2020,124: 109468.
[28]ZHANG K, HAN MC,LIUYQ,FROIMOWICZ P.Designand synthesis of bio-based high-performance trioxazinebenzoxazine resin via natural renewable resources [J]. ACS Sustainable Chemistry amp; Engineering,2019,7(10): 9399-9407.
[29]YUY,Y,AH.Itrisicallocombustiblelmersitoutfeetadantaditives:Sulfur-cotaigadbi based benzoxazines [J].European Polymer Journal,2020,133:109770.
[30] LIU X Y, ZHANG R H,LITQ,ZHUPF,ZHUANG QX.Novel fulybiobased benzoxazines fromrosin: Synthesis and properties [J].ACS Sustainable Chemistry amp; Engineering,2017,5(11): 10682-10692. furfurylamineandsalicylaldehyde:Synthesis,characterizationand properties[J].ReactiveandFunctionalPolymers,2020,149: 104516.
[32]AGAGT,LIUJ,GRAFR,PESS HW,ISHDA H.Benzoxazole resin: Anovelclassof thermosetpolymer via smartbezxaine resin[J].Macromolecules,2012,45(22): 8991-8997.
[33] FROIMOWICZ P,ZHANG K, ISHIDA H. Intramolecular hydrogen bonding in benzoxazines: When structural design becomes functional [J]. Chemistry: A European Journal,2016,22(8): 2691-2707.
[34]ZHAOWQ,YANG R,YANG SF,ZHANG K.Experimentalandcomputational ivestigationsonring-openingpolymrzation mechanisms of amide-functional benzoxazines [J]. Macromolecular Research,2023,31(1): 45-52.
[35]LIN,YANGSF,ZHGK.iopene-chbzoxazines withanamide moiety:Itegrationfstructuralandhydrogeboding influenceonthepolymerizationmechanismbyexperimentalandcomputatioal studies[J].Macromolecules,023,56(1):667- 6678.
[36]ZHANG K, HAN L, FROIMOWICZ P, ISHIDA H. A smart latent catalyst containing o -trifluoroacetamide functional benzoxazine: Precursor for lowtemperature formation of very high performance polybenzoxazole with low dielectric constant and highthermal stability [J].Macromolecules,2017,50(17): 6552-6560.
[37]SUN L, ZHANG K,MINCY,LIU YQ, WANG Y T, ZHANG JX,LI SJ. Synthesis,characterization and structuraltheally rearrangementof ortho-amide functional benzoxazinecontainingacetylene group[J].Thermochimica Acta,2018,668:1-8.
[38]YANGR,HAOBR,SUNL,ZHANG K.Cros-linkedpoly (bezoxazole-co-siloxane)networkswithhigh thermal stabilityandlow dielectricconstant basedonanew ortho-amide functional benzoxazine[J].Joumalof Applied Polymer Science,2021,138(6): 49792.
[39]ZHANG K,SHANG Z K,EVANS CJ,HANL,ISHDA H, YANG SF.Benzoxazine atropisomers:Intrinsic atropisoration mechanism and conversion to high performance thermosets [J].Macromolecules,2018,51(19): 7574-7585.
[40] ZHANG K,LIUY Q,SHANG Z K,EVANSCJ,YANG SF.Effects ofend-capson theatropisomerzation,polymerzationdthe thermal properties of ortho-imide functional benzoxazines [J].Polymers,2019,11(3): 399.
[41] ZHANGK,LIU J,ISHIDA H.Anultrahigh performancecross-linkedpolybenzoxazoleviathermalconversion frompoly (benzoxazine amic acid) based on smart o -benzoxazine chemistry [J]. Macromolecules, 2014,47(24): 8674-8681.
[42]HAOB,LUYQ,YUXY,ZAGK.Sthsis,olymerzationineticsndtalpropertisofzoxaineresinaiing ortho-maleimide functionality [J].Macromolecular Research,2021,29: 24-32.
[43]LU Y,PENGYL,YANG Y,LIUJH,ZHANGK.Low-temperature erpolymerzablebezoxazie monomerbaring noboend furangroups:Sythesis,characterization,plymerization,andpropertiesofits polymer[J].Molecules,2023,28(9):3944.
[44] ZHANGK,HAOBR,SHDA H.Synthesisofasmartbisbenzoxazine withcombinedadvantagesofbismaleimideandbenzoxaine resinsaditsunexpectedformationofveryhghperformanecros-lnkedpolybenzoxazoleJ].Polymer,021,223:123703.
[45] ZHANG K,IUY Q,EVANs CJ,YANGSF.Easilyprocessble themosets withoutstanding performanceviasmarttwistedallmolecule benzoxazines [J].Macromolecular Rapid Communications,2020,41(5):1900625.
[46] SHENG WCYINR,CHENJF,ZHANG K.High-performance highlycros-linkednetworks basedonortho-imide functional mon benzoxazines containing benzocyclobutene group [J]. Reactive and Functional Polymers,2022,171: 105154.
[47]YUXY,ZHANG K.Studiesontheisomeric efectofnitrilefunctionalityonthepolymerizationandthmal propertiesofortho norbornene-based benzoxazine resins [J]. Journal of Polymer Research,202o,27: 1-8.
[48]ZHANG K, ISHDA H.Thermallstable polybenzoxazinesvia ortho-norbornene functional benzoxazine monomers:Unique advantages in monomer synthesis, processing and polymer properties [J]. Polymer, 2015,66: 240-248.
[49]ZHANGK,LIUYQWANGYT,SUNL.Ahighperformance polybenzoxazineviasmartortho-norboene functionalbezxaine monomer based onring-opening metathesis polymerization[J].High PerformancePolymers,2019,31(5):513-520.
[50] ZHANG K, QIUJM,LI S J,SHANG Z K, WANG JY.Remarkable improvement of thermal stabilityof main-chain benzoxazine oligomer by incorporating o -norbornene as terminal functionality [J]. Journal of Applied Polymer Science,2017,134(41): 45408.
[51]ZHANGK,YUXY,WANGYTLIUQ.Termallyactivatedstructuralchangesofanorboene-bezoxaine-phaloitrile thermosetting system: Simple synthesis,self-catalyzed polymerization,andoutstanding flame retardancy[J].ACS Applied Polymer Materials,2019,1(10):2713-2722.
[52]LUY,YUXY,EVANSCJ,YANGSF,ZHANG K.Elucidating theroleofacetyleneiortho-phthalimidfunctionalbenzoxaines: Design,synthesis,and structure-property investigations [J].Polymer Chemistry,2021,12(35): 5059-5068.
[53] WANG Y T,YOU SJ,HU J, ZHANG K. Synthesis and properties of benzoxazine monomers bearing both 3-methyltetraydrophtalimideandnitrileroups:para-paravs.toortho.acromoleularResearch2,8(1):74-81.
[54]ZHANG K,LIUYQ,HANL, WANGJY,IHDA H.Synthesisand hermallinducedtructuraltrasformationofphhaliideand nitrile-functionalizedbenzoxazine:Towardsmartorth-benzoxainechemistryforlowflammabilitythermosets[J].RSCAdvances, 2019,9(3):1526-1535.
[5]YANG R, WANG YT,HAOBR, ZHANG K.Synthesis of ortho-methyltetrahydrophthalimide functional benzoxazinecontaining phthalonitrile group:Thermallyactivated polymerizationbehaviors and properties ofits polymer[J]. High Performance Polymers, 2021,33(2): 196-204.
[56]ASHRAF W, REHMAN A, HUSSAIN A, KARIM A, SHARIF HR, SIDDIQUY M,LIANFU Z. Optimization of extraction proces andestimationofflavonoidsfom fenugrek using green extractingdeepeutectic solvents coupled withultrasonicationJ].Foodand Bioprocess Technology,2024,17(4): 887-903.
[57]LIFN,BOATENGID,CHENSM,YANG X M,SOETANTODA,LIUWM.Pulsedlightiradiation improves degradationof ginkgolic acidsandretainmentofnkgoflavonoidsandterpentrilactonesinginkgobilobaleavesJ].IndustrialCropsandProducts, 2023,204: 117297.
[58] MAHUNU G K, ZHANG H,APALIYA MT,YANG QY, ZHANG X Y, ZHAO L N.Bamboo leaf flavonoid enhances thecontrol effect of pichia caribbca against penicilium expansum growth and patulinaccumulation in apples [J]. Postharvest Biology and Technology,2018,141: 1-7.
[59]ZHANGH,QIS,DAI Z,ZHANGM,SUNJF,DUDL.Alelopathic potentialofflavonoids identifiedfrominvasiveplantcoya canadensis on agrostis stolonifera and lactuca sativa [J].2017,41(2): 223-238.
[60]延璽,劉會青,鄒永青,任占華.黃酮類化合物生理活性及合成研究進展[J].有機化學,2008,28(9):1534-1544. YAN X,LIUHQ,ZOUYQRENZH.Progressinthephsiologicalactivityandsynthesisofflavonids[J]OrganicCheistry, 2008,28(9):1534-1544.
[61]ZHANGK,TANXX,WANGYT,ISHDA H.Uniqueself-catalyzedcationicring-openingpolymerizationofahighperfoance deoxybenzoin-based 1,3-benzoxazine monomer [J]. Polymer,2019,168: 8-15.
[62] GOLEIJ P, KHANDAN M, KHAZEEI TABARI M A, SANAYE PM, ALIJANZADEHD, SOLTANI A, HOSSEINI Z,LARSEN D, KHANH,KURAGA.Ulockingthpotential: Howfvoidsectgogesis,idatiestrss,ti proliferation,isionndalterreetoriteractiosindometriosisJ].FoodSiece amp;Nutrition,5,3:60.
[63]GORNAKI, BARTOSZEWsKIR,KROLICZEWsKIJ.Comprehensive reviewofantimicrobialactivitiesofplantfavonoids[J]. PhytochemistryReviews,2019,18:241-272.
[64] TENG H, ZHENG YM,CAOH,HUANG Q,XIAO JB,CHENL.Enhancementof bioavailabilityand bioactivityof diet-derived flavonoidsbyaplicationofnanotehology:Areview].CrtcalReviewsinFodSienceandNutritio,,6(3):78-93.
[65] ZHOU Q,CHENG K W,XIAOJB, WANGMF.The multifunctional rolesofflavonoids againsttheformatioof advanced glycation endproducts (AGEs)andAGEs-induced harmful effects[J].TrendsinFoodScienceamp;Technology,2020,103:333-347.
[66] ZHANG K,LIU Y Q, HAN M C,FROIMOWICZ P.Smart and sustainable design of latent catalyst-containing benzoxazie-bioresins and application studies [J]. Green Chemistry,2020,22(4): 1209-1219.
[67]HAOB,HANL,LIUYQ,ZHANGK.Anapigenin-basedb-benzoxazine withthreepolymerzable fuctionalities:Sstaiable synthesis,thaltentplmerzatio,ndexcellnttal propersofitstemosets].olyerCemistr(6): 5800-5809.
[68] ZHAO W Q, HAOBR,LUY, ZHANG K.Thermal latent and low-temperature polymerizationof abio-benzoxazine resinfrom natural renewable chrysin and furfurylamine [J]. European Polymer Journal,2022,166: 111041.
[69]DAIJY,TNGN,SHENXB,LUY,CAOLJ,ZHUJ,LIU XQ.Snthesis fiobasedbenzoxainessuitableforvacuste resintransferoldingprocesviaintroductioofsoftsilcosegmntJ].Industrialamp;EngineeringChemistryesearch,8,78): 3091-3102.
[70]QUL,XIZ.Preparationandsurfacepropertisofovellowsurfacefrenergyfluoriatedsilane-functioalpolybenzxaefls [J].Langmuir,2011,27(13): 8365-8370.
[71]HAO BR, WANGJQ,ZHANG Y,SHENG WC,ZHANG K. Chrysin-based bio-benzoxazine: Acopolymerizable greenaditive for lowering curing temperatures and improving thermal propertiesof various thermoseting resins [J].ACS Applied Polymer Materials, 2022,4(2): 1286-1297.
[72]YANG R, YANGR, YANG SF, ZHANG K. Hydrogenbonding-richbio-benzoxazie resin provides high-performance theosets and ultrahigh-performance composites[J].ACS Sustainable Chemistry amp; Engineering,2024,12(4): 1728-1739.
[73]YANG R, ZHANG K.Designandsynthesisofflavonoid-based mono-bis-,andtri-benzoxazines:Toward elucidatingrolesof oxazine rng umoer and nyurogen nang onner poymezauonmecnansms and neal properues J」. Macromoecues,u, 58:616-626.
[74]CAO D X,LIU Z Q, VERWILST P,KOO S,JANGJILI P,KIM JS,LIN W. Coumarin-based smal-molecule fluorescent chemosensors [J].Chemical Reviews,2019,119(18):10403-10519.
[75]FROIMOWICZ P,RODRIGUEZ ARZA C,OHASHI S,ISHIDA H. Tailor-made and chemicaly designed synthesis of coumarincontainingbenzoxazines and theirreactivitystudy toward their thermosets[J].Joural of Polymer Science PartA:Polymer Chemistry,2016,54(10): 1428-1435.
[76]KISKANB,YAGCIY.Thermalycurable benzoxazine monomer withaphotodimerizable coumarin group[J].JoualofPolymer Science Part A: Polymer Chemistry,2007,45(9): 1670-1676.
[77] ARZA CR,FROMOWICZ P,IHDA H.Smart chemical designincorporating umbeliferoneas natural renewable resource toward the preparationofthermallystablethermosets materials basedonbenzoxazinechemistryJ]RSCAdvanes,2015,5(118):9785- 97861.
[78] SININK,ENDOT.Towardelucidating theroleofnumberofoxazineringsandintermediatesinthe benzoxazinebackboneontheir thermal characteristics [J].Macromolecules,2016,49(22):8466-8478.
[79] LUY,ZHAKebleasssorces tccsslogendpsphos-frefeeadantthotsih ultra-low heat release capacity [J]. Chemical Engineering Journal,2022,448: 137670.
[80]LU Y,LIN,PENG Y,MOHAMEDMG,KUOS W,ZHANGK.Facileandeco-friendlysynthesisofhydrogenbnding-ichbiobasedbisbenzoxainersis ithlowsurfacefreeergy,trongadesionstrengthandhighthemalstabilityJ].MolecularSystems Designamp; Engineering,2024,9(1):86-98.
[81] LU Y,YANG Y, WANGJQ,ZHANG K.Developmentofintrinsicallflam-retardantbithemosets withfurterehancedtheal stabilitythroughaphoto-thermaldualpolymerizationstrategy[J].PolymerDegradationandStability2024,229:110948.
[82] ZHAO J, CHENJP,ZHENG X X,LINQ,ZHENG G C, XUYL. Urushiol-based benzoxazine containing sulfobetaine groups for sustainable marine antifouling applications [J]. Polymers,2023,15(10): 2383-2399.
[83] YAO Z H,LUY,SONGJN,ZHANG K.Synthesisofdaidzeinandthiophenecontaiingbenzoxazineresinand its theosetnd carbon material[J].Molecules,2023,28(13):5077-5089.
[84] LIU JM, GUOPL, YUWJ, ZHAO W W, ZHANG K,IU X Q. Directconversionof iquid bio-benzoxazine precursorinto porous graphene-based lubricant additive bylaser irradiation[J].ACS Applied Nano Materials,2024,7(4): 4355-4363.
[85] LIU J K,ZHANGL Y, ZHU X B, CHENQ,ZHANG K,LIU X Q. Design of a low-temperature ring-opening benzoxazine system using asupramolecular hydrogen-bond structure [J].ACS Applied Polymer Materials,2023,5(8): 6595-6606.
[86]LUY,YUXY,HANL,ZHANG K.Recentprogress of highperformancethermosetsbasedonnorboene functionalbezaine resins[J].Polymers,2021,13(9): 1417-1426.
[87]ZHANGK,IHDAHAnaomaloustrade-offefectonthepropertiesofsmartortho-functioalbenzoxaziesJ]olymer Chemistry,2015,6(13):2541-2550.
[88]CHENG M,ZHAO W W, WEN SF,LIU X Q.Thre dimensional graphene/copperdual networks ascomposite conductors with enhanced current carrying capacity [J]. ACS Applied Nano Materials,2024,7(7): 8164-8174.
[89] YU WJ,PENGYY,CAOLJ,ZHAO WW,LIUXQ.Free-standing laser-iducedgraphene filmsforhigh-performance electromagnetic interference shielding [J]. Carbon,2021,183: 600-611.
[90] LIU JM,CHEN B B, GUO PL, YU Z Q,SHENG W C, ZHANG K,LIU X Q.Fabrication of 3D porous graphene materials foroilbased lubrication: Tribological and wear performance [J]. Carbon,2024,221: 118892.
(責任編輯:王吉晶)