魯 燕
摘要:預算管理是企業利用價值和價值形式在科學的市場預測基礎上,對企業未來的內部生產經營活動所進行的規劃、控制與協調,是企業對未來整體經營規劃的總體安排,是一項重要的管理工具,能幫助管理者進行計劃、協調、控制和業績評價。隨著現代企業制度的推行,預算管理作為一種有效的管理手段,越來越引起人們的重視,且隨著工效掛鉤在大型集團企業的推廣,預算成為考核企業管理人員工作績效和利益的重要依據。
關鍵詞:預算管理;聯合基數
在傳統的預算編制過程中,尤其是在大型的集團企業中,集團公司或者上級與子公司或者下級的關系是對立的。每年在集團與子公司確定經營指標(實現利潤)時,雙方討價還價,沒有一個合理的利潤完成指標,最后只能雙方折中,致使預算既沒有科學性也不能滿足雙方的利益需求。
子公司作為經營單位希望最后確定的指標低一些,完成起來有把握。集團則希望子公司能夠把真實的、經過努力能夠實現的底數報上來。由于經營信息的不對稱,雙方不能在對等的把握尺度來商定。另外,目前集團經營責任制在獎懲方式上有不盡合理之處,即子公司完成了計劃指標,只能將下浮的30%工資補上,只有超額完成計劃指標才能得到獎勵,超額越多獎勵越多。對于預計盈利或將比上年提高利潤完成數的子公司的經營者,在年初會更加保守上報的當年利潤指標完成數,以便給自己更加寬松的利潤完成空間,從而保證年終自身及本企業職工利益的實現。另外對于已經完不成計劃指標的公司,無論相差指標多少都扣30%的工資,也挫傷了經營者當年工作的積極性。這樣的的預算對于企業是沒有意義的,也完全改變了預算管理在企業推行的初衷。
針對上述問題,2001年11月,杭州商學院胡祖光教授完成了國家自然科學科技基金課題《不對稱信息下的委托代理理論研究》,提出了“聯合確定基數法理論”(HU理論),該理論的核心是激勵企業經營者主動地“跳起來摘蘋果”,從而較好地解決委托者和代理者之間在利潤基數確定中的博奕問題或對策問題。
聯合確定基數法理論(HU理論)旨在較好地解決委托者和代理者之間在利潤基數確定中的博奕問題或對策問題,其中3個參數是宏觀調控的關鍵。
1 折扣數(W) 代理者自己提出一個預計能夠完成的最大收入基數,委托者不是討價還價地增加這個基數,而是按這個基數的90%(W=0.9)甚至50%(W=0.5)作為合同數。折扣數也稱代理者權數。
2 超額獎勵系數(P) 合同數超額部分的10%(P=0.1),甚至全部(P=1.0)作為職工的利益分配(工資與獎金)。超額獎勵系數也稱超額獎勵比例。
3 少報受罰系數(Q) 代理者年初自報數與年終完成數進行比較,如果自報數小于完成數,委托者有權收取“少報罰金”,其額度為少報數的7.5%(Q=0.075),甚至95%(Q=0.95)。少報受罰系數也稱少報受罰比例。參數的數學關系為使HU理論對利益分配模式行之有效,折扣數(W)、超額獎勵系數(P)、少報受罰系數(Q)3者之間必須滿足如下數學關系式:P>Q>WP;假設:代理者年初提出的預計能夠完成的最大收入基數是X,合同數定為90%X(W=0.9),合同數的超額部分全部留給代理者(P=1),如果年終發現X小于實際完成數則扣除少報數的95%(Q=0.95)。將3個參數代入數學關系式,檢驗是否滿足必須的條件:1>0.95>0.9×1;顯然,上述假設的3個參數滿足了必須的不等式條件。
簡單通俗的解釋“聯合基數法”就是“各報基數,取其平均;超額完成有獎,少報預算受罰”。我們假設超額獎勵系數是0.3,少報受罰系數是0.2,其操作過程為:
集團或者上級報出一個利潤基數A,同時子公司或者下級報出一個利潤基數B;將雙方所報數字進行算術平均,作為正式的利潤任務基數C,即C=(A+B)/2;年終實際完成利潤數D超過利潤任務基數C的部分,超過部分的30%作為獎勵發放給子公司或下級,即超額獎勵=(D-C)*0.3 ;將實際利潤完成數與子公司或者下級年初預算數比較,如果子公司或者下級的自報預算數B小于年終實際完成數D,說明子公司或者下級在報預算時隱瞞自己的能力,則要對子公司或者下級收取“少報預算罰款”即少報預算罰款=(D-C)*0.2,如果自報數大于實際完成數,多報部分不獎也不罰。
舉例說明更加清晰明了,假設某集團提出的當年利潤指標為1000萬元,子公司自報完成利潤為600萬元,年終實現利潤1200萬元,套用“聯合基數法”公式計算如下:
任務基數C=(1000+600)/2=800萬元;
年終超基數應獎勵=(1200-800)*0.3=120萬元;
少報預算罰款=(1200-600)*0.2=120萬元;
實際獲得獎金=120-120=0萬元。
如果子公司或者下級當時自報利潤數為800萬元,則:
任務基數C=(1000+800)/2=800萬元;
年終超基數應獎勵=(1200-800)*0.3=120萬元;
少報預算罰款=(1200-800)*0.2=80萬元,
實際獲得獎金=120-80=40萬元。
由上面的例子可知。由于總經理實際完成利潤能力為1200萬元,他如果不如實上報雖然可以獲得超基數獎勵120萬元,但同時也將面臨120萬元的“少報預算罰款”。因此他雖然完成了利潤,但是超基數獎勵與少報預算罰款兩者相抵,仍然沒有獎金可拿。而另一種情況,他上報的利潤數與他實際完成的利潤數越接近,雖然也略低于實際利潤完成數,但是超基獎勵大于少報預算罰款,仍可實際得到獎金40萬元。
需要說明的是經過嚴格的推導論證,聯合確定基數法的三個參數必須滿足:“超額獎勵系數>少報罰款系數>代理人自報權數*超額獎勵系數”。以上面的例子說明即為:超額獎勵系數0.3>少報罰款系數0.2>代理人自報權數0.5*超額獎勵系數0.3=0.15(在確定任務基數時,代理人自報數所占比重取其平均數,即代理人自報權數為0.5)
由此可見“聯合基數確定法”能避免集團或者上級與子公司或者下級之間對立關系,且可以將兩者的利益最大限度的結合起來,同時也大大提高了子公司或者下級“跳起來夠蘋果”的工作積極性。
此篇文章只是以集團公司與子公司之間的關系投石問路,簡單舉例分析“聯合確定基數法”在企業預算中予以推廣的積極意義。此外還可以延伸為公司董事會與職業經理人之間的關系、業務經理與銷售員之間的關系等,還可以以三個參數為基礎延伸出完成指標獎勵系數、超額獎勵系數等,使得實際獎勵=完成指標獎勵+超額獎勵+少報罰金,使“聯合確定基數法”將在企業預算中更加完善豐滿起來。總之企業可以根據企業自身的實際情況確定合理的參數,結合“聯合確定基數法”使得企業預算能更加準確有效,同時充分調動企業下級的工作積極性,達到上下關系的雙贏局面。