王敞正
[摘 要]隨著計算機技術、控制技術及信息技術的發展,電力系統自動化面臨著空前的變革。多媒體技術、智能控制將迅速進入電力系統自動化領域。
[關鍵詞]新形勢;電力系統自動化;發展
一、電力系統自動化的基本概念
電力系統自動化的領域包括生產過程的自動檢測、調節和控制,系統和元件的自動安全保護,網絡信息的自動傳輸,系統生產的自動調度,以及企業的自動化經濟管理等。電力系統自動化的主要目標是保證供電的電能質量(頻率和電壓)、系統運行的安全可靠,提高經濟效益和管理效能。
二、變革性重要影響的三項新技術內容
1.電力系統的智能控制。電力系統的控制研究與應用在過去的40多年中大體上可分為3個階段:基于傳遞函數的單輸入、單輸出控制階段;線性最優控制、非線性控制及多機系統協調控制階段;智能控制階段。智能控制是當今控制理論發展的新階段,主要用來解決那些用傳統方法難以解決的復雜系統的控制問題。特別適于那些具有模型不確定性、具有強非線性、要求高度適應性的復雜系統。
2.FACTS和DFACTS
(1)FACTS技術概念的提出。所謂“柔性交流輸電系統技術”又稱“靈活交流輸電系統技術”,簡稱FACTS,就是在輸電系統的重要部位,采用具有單獨或綜合功能的電力電子裝置,對輸電系統的主要參數(如電壓、相位差、電抗等)進行調整控制,使輸電更加可靠,具有更大的可控性和更高的效率。這是一種將電力電子技術、微機處理技術、控制技術等高新技術應用于高壓輸電系統,以提高系統可靠性、可控性、運行性能和電能質量,并可獲取大量節電效益的新型綜合技術。
(2)FACTS的核心裝置ASVC的研究現狀。ASVC由二相逆變器和并聯電容器構成,其輸出的三相交流電壓與所接電網的三相電壓同步。它不僅可校正穩態運行電壓,而且可以在故障后的恢復期間穩定電壓,因此對電網電壓的控制能力很強。與旋轉同步調相機相比,ASVC的調節范圍大,反應速度快,不會響應遲緩,沒有轉動設備的機械慣性、機械損耗和旋轉噪聲。
(3)DFACTS的研究態勢。DFACTS是指應用于配電系統中的靈活交流技術,它是Hingorani于1988年針對配電網中供電質量提出的新概念。其主要內容是對供電質量的各種問題采用綜合的解決辦法,在配電網和大量商業用戶的供電端使用新型電力電子控制器。
三、基于GPS統一時鐘的新一代EMS和動態安全監控系統
1.基于GPS統一時鐘的新一代EMS。目前應用的電力系統監測手段,主要有側重于記錄電磁暫態過程的各種故障錄波儀和側重于系統穩態運行情況的監視控制與數據采集(SCADA)系統。前者記錄數據冗余,記錄時間較短,不同記錄儀之間缺乏通信,使得對于系統整體動態特性分析困難;后者數據刷新間隔較長,只能用于分析系統的穩態特性。兩者還具有一個共同的不足,即不同地點之間缺乏準確地共同時間標記,記錄數據只是局部有效,難以用于對全系統動態行為的分析。
2.基于GPS的新一代動態安全監控系統。基于GPS的新一代動態安全監控系統,是新動態安全監測系統與原有SCADA的結合。電力系統新一代動態安全監測系統,主要由同步定時系統,動態相量測量系統、通信系統和中央信號處理機四部分組成。采用GPS實現的同步相量測量技術和光纖通信技術,為相量控制提供了實現的條件。
四、電力系統自動化的研究方向
1.智能保護與變電站綜合自動化。對電力系統電保護的新原理進行了研究,將國內外最新的人工智能、模糊理論、綜合自動控制理論、自適應理論、網絡通信、微機新技術等應用于新型繼電保護裝置中,使得新型繼電保護裝置具有智能控制的特點,大大提高電力系統的安全水平。
2.電力市場理論與技術。基于我國目前的經濟發展狀況、電力市場發展的需要和電力工業技術經濟的具體情況,認真研究了電力市場的運營模式,深入探討并明確了運營流程中各步驟的具體規則;提出了適合我國現階段電力市場運營模式的期貨交易(年、月、日發電計劃)、轉運服務等模塊的具體數學模型和算法,緊緊圍繞當前我國模擬電力市場運營中亟待解決的理論問題。
3.電力系統實時仿真系統。對電力負荷動態特性監測、電力系統實時仿真建模等方面進行了研究,引進了加拿大Teqsim公司生產的電力系統數字模擬實時仿真系統,建成了全國高校第一家具備混合實時仿真環境的實驗室。該仿真系統不僅可進行多種電力系統的穩態及暫態實驗,提供大量實驗數據,并可與多種控制裝置構成閉環系統,協助科研人員進行新裝置的測試,從而為研究智能保護及靈活輸電系統的控制策略提供了一流的實驗條件。
五、電力系統運行人員培訓仿真系統及電氣設備狀態監測與故障診斷技術
1.配電網自動化。在中低壓網絡數字電子載波ndlc、配網的模型及高級應用軟件pas、地理信息與配網scada一體化方面取得了重大技術突破。其中,ndlc采用了dsp數字信號處理技術,提高了載波接收靈敏度,解決了載波正在配電網上應用的衰耗、干擾、路由等技術難題。
2.電力系統分析與控制。對在線測量技術、實時相角測量、電力系統穩定控制理論與技術、小電流接地選線方法、電力系統振蕩機理及抑制方法、發電機跟蹤同期技術、非線性勵磁和調速控制、潮流計算的收斂性、電網調度自動化仿真、電力負荷預測方法、基于柔性數據收集與監控的電網故障診斷和恢復控制策略、電網故障診斷理論與技術等方面進行了研究。
3.人工智能在電力系統中的應用。結合電力工業發展的需要,開展了將專家系統、人工神經網絡、模糊邏輯以及進化理論應用到電力系統及其元件的運行分析、警報處理、故障診斷、規劃設計等方面的實用研究。
4.現代電力電子技術在電力系統中的應用
開展了電力電子裝置控制理論和控制算法、各種電力電子裝置在電力系統中的行為和作用、靈活交流輸電系統、直流輸電的微機控制技術、動態無功補償技術、有源電力濾波技術、大容量交流電機變頻調速技術和新型儲能技術等方面的研究。
5.電氣設備狀態監測與故障診斷技術
通過將傳感器技術、光纖技術、計算機技術、數字信號處理技術以及模式識別技術等結合起來,針對電氣設備絕緣監測方法和故障診斷的機理進行了詳細的基礎研究,開發了發電機、變壓器、開關設備、電容型設備和直流系統等主要電氣設備的監控系統,全面提高電氣設備和電力系統的安全運行水平。
六、結語
電力系統是一個龐大的綜合性的系統,從發電、變電到配電,最后到用戶的使用是一個整體連續的過程,這其中的任何一個環節都對電力系統的正常運行很所影響。在信息化高速發展的時代背景下,在電力系統中實現自動化是其發展的目標,可以對發電控制、電力調度和配網方面都實現自動化,不僅可以節省企業的運行成本,并且可以提高工作效率,增加企業的經濟效益。
參考文獻:
[1]關于新形勢下電力系統自動化的新技術及研究方向 。韓曉明,朝殿福,吳刊。《城市建設理論研究》2012年第27期.
[2]關于新形勢下的電力系統自動化新技術創新。李蕓慧。《科技創新與應用》2012年第32期.