賈彤婷
摘 要:小學(xué)數(shù)學(xué)課堂對(duì)于學(xué)生邏輯思維能力的養(yǎng)成具有重要作用,教師要認(rèn)識(shí)到“因材施教”思想的內(nèi)涵,針對(duì)不同的學(xué)生進(jìn)行授課。本文主要探討了分層教學(xué)法在小學(xué)數(shù)學(xué)課堂中的應(yīng)用方法,希望為一線教師的教學(xué)提供幫助。
關(guān)鍵詞:小學(xué)數(shù)學(xué);分層教學(xué)法;教學(xué)方法
分層教學(xué)法,顧名思義,就是將學(xué)生按照一定的方法進(jìn)行分層,隨后按照不同層次學(xué)生的需求進(jìn)行授課的一種教學(xué)方法。雖然不少教師在教學(xué)中已經(jīng)應(yīng)用過分層教學(xué),但分層教學(xué)法在小學(xué)數(shù)學(xué)中的應(yīng)用現(xiàn)狀仍不容樂觀,教師不完全清楚學(xué)生的基礎(chǔ)就進(jìn)行教學(xué)的實(shí)例頻頻出現(xiàn)。對(duì)此筆者結(jié)合自身對(duì)于分層教學(xué)的理解,以及多年的教學(xué)經(jīng)驗(yàn)提出幾點(diǎn)有關(guān)分層教學(xué)法在小學(xué)數(shù)學(xué)實(shí)踐中的應(yīng)用策略。
一、教學(xué)目標(biāo)分層
教師的備課十分重要,備課除了要確定教學(xué)目標(biāo)外,還要“備學(xué)生”,也就是了解學(xué)生的現(xiàn)有知識(shí)水平,以及學(xué)生即將達(dá)到的水平。分層教學(xué)法要求教師的備課不僅要做到上述目標(biāo),還有講不通的學(xué)生按照基礎(chǔ)水平和接受程度進(jìn)行分層,為不同水平線的學(xué)生制定不同的教學(xué)目標(biāo),確保所有學(xué)生都能完成目標(biāo)。
例如,在學(xué)習(xí)“負(fù)數(shù)的初步認(rèn)識(shí)”時(shí),教師可將教學(xué)目標(biāo)分為三個(gè):知道負(fù)數(shù)的意義,能用負(fù)數(shù)表示日常生活中的數(shù)量;在理解負(fù)數(shù)意義的基礎(chǔ)上,能夠正確進(jìn)行負(fù)數(shù)大小的比較;在上述基礎(chǔ)上能夠用負(fù)數(shù)解決實(shí)際生活中的問題。在教學(xué)實(shí)際中,教師以學(xué)生生活中常見的電梯引入,由于電梯的樓層數(shù)涉及正數(shù)和負(fù)數(shù),且不涉及0,有利于學(xué)生理解負(fù)數(shù)的含義,并在教師的引導(dǎo)下逐步認(rèn)識(shí)到0既不是正數(shù)也不是負(fù)數(shù)的原因。這種教學(xué)方式不強(qiáng)求所有的學(xué)生在教師的講解后能達(dá)到同一水平線,糾正了傳統(tǒng)教學(xué)中“一刀切”的弊端,有助于幫助學(xué)生樹立學(xué)習(xí)數(shù)學(xué)的自信。同時(shí),教師要注意學(xué)生的水平或?qū)哟尾⒉皇且怀刹蛔兊模謱咏虒W(xué)也要時(shí)時(shí)“流動(dòng)”,以滿足學(xué)生的學(xué)習(xí)需求。
二、課堂提問分層
分層教學(xué)法除了重視教學(xué)目標(biāo)分層外,對(duì)于課堂上的師生互動(dòng)也分外重視。其要求教師在明確學(xué)生掌握某個(gè)知識(shí)點(diǎn)后進(jìn)行提問,以激勵(lì)學(xué)生繼續(xù)掌握更多的知識(shí)。同時(shí),由于學(xué)生的基礎(chǔ)水平不同、學(xué)習(xí)習(xí)慣不同,課堂學(xué)習(xí)的進(jìn)度會(huì)存在差異,教師可以在承認(rèn)差異的基礎(chǔ)上引導(dǎo)學(xué)生互助,反應(yīng)能力快的學(xué)生學(xué)習(xí)能力較強(qiáng),可不一定具有良好的學(xué)習(xí)習(xí)慣,教師將互補(bǔ)的學(xué)生分為一組,引導(dǎo)學(xué)生互相影響,共同進(jìn)步。
例如,在學(xué)習(xí)有關(guān)三角形的知識(shí)時(shí),教師可以在課上拿出五根小木棍,長(zhǎng)度分別為:11cm、8cm、7cm、5cm、3cm,要求學(xué)生選擇其中三根圍成三角形,圍成的三角形越多越好。針對(duì)學(xué)困生,教師可以問題“3cm、5cm和7cm的木棍能圍成三角形嗎?”引導(dǎo)學(xué)生動(dòng)手,將木棍圍成三角形。針對(duì)中等生,教師可以問題“3cm、5cm和8cm的木棍為什么不能圍成三角形,任意兩邊的長(zhǎng)度之和一定會(huì)大于第三邊嗎?”進(jìn)行提問,引導(dǎo)學(xué)生在本子上畫出其他三角形并用尺子進(jìn)行測(cè)定,最終驗(yàn)證這一結(jié)論。針對(duì)優(yōu)等生,教師可以探究性問題“我們知道了三角形的三條邊的關(guān)系,你能通過自己動(dòng)手知道三角形三個(gè)內(nèi)角的度數(shù)嗎?它們的和是多少?”進(jìn)行提問,由于優(yōu)等生一般有課下預(yù)習(xí)的習(xí)慣,因此優(yōu)等生能不假思索地說出180°,但教師要注重探究過程的重要性,即使知道結(jié)果,也要引導(dǎo)學(xué)生探究“為什么三個(gè)角的和是180°,而不是190°”,幫助學(xué)生深刻地認(rèn)識(shí)到三角形的特點(diǎn)。
三、課后練習(xí)分層
由于學(xué)生的學(xué)習(xí)能力不一,所以可能對(duì)于這個(gè)學(xué)生來講三兩步就能解決的問題,另一個(gè)學(xué)生要花費(fèi)半小時(shí)甚至更長(zhǎng)的時(shí)間解決。這就要求教師要根據(jù)學(xué)生的能力設(shè)置課后練習(xí),既能幫助學(xué)生鞏固所學(xué)知識(shí),又能拓展思維。在實(shí)際教學(xué)中,由于數(shù)學(xué)課程較緊張,教師可以設(shè)置兩種類型的題目,即基礎(chǔ)題和探索題,要求所有學(xué)生都完成基礎(chǔ)題,而探索題只留給對(duì)于有進(jìn)一步拓展能力需求的學(xué)生,如學(xué)生有不懂的問題可直接在課下詢問教師。
例如,在學(xué)生學(xué)完“分?jǐn)?shù)的加法和減法”后,對(duì)于基本的運(yùn)算已經(jīng)不成問題,教師可聯(lián)系實(shí)際生活進(jìn)一步鞏固所學(xué)內(nèi)容。比如,設(shè)計(jì)基礎(chǔ)題為:小明準(zhǔn)備了一杯水,小華喝了1/10,麗麗喝了1/6后怕被小明發(fā)現(xiàn)又加入了2/9的水,求現(xiàn)在杯中的水是多少?學(xué)生對(duì)于生活化的問題比較感興趣,且該題較為簡(jiǎn)單,學(xué)生一看便知曉計(jì)算方式。為滿足全體學(xué)生的需求,教師可設(shè)置探索題為:明明吃了一個(gè)蛋糕的1/4,一小時(shí)后吃了剩下蛋糕的2/5,兩小時(shí)后吃了剩下的1/7,問明明吃到的蛋糕多還是剩下的蛋糕多?這樣的習(xí)題從學(xué)生的實(shí)際生活出發(fā),有助于學(xué)生將學(xué)到的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際,做到從生活中來,到生活中去。
總之,分層教學(xué)法在小學(xué)數(shù)學(xué)中的應(yīng)用要求教師務(wù)必深入了解學(xué)生的基礎(chǔ)水平和“最近發(fā)展區(qū)”,保證所有學(xué)生都能在各自的“最近發(fā)展區(qū)”內(nèi)取得進(jìn)步,逐步提升學(xué)生的數(shù)學(xué)素養(yǎng)。
參考文獻(xiàn)
[1] 許芝麗. 關(guān)于分層教學(xué)模式在小學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用探討[J].數(shù)學(xué)學(xué)習(xí)與研究,2018(18):58.
[2] 孫治強(qiáng). 關(guān)于在小學(xué)數(shù)學(xué)教學(xué)中“分層異步”教學(xué)法的應(yīng)用分析[J].才智,2018(02):38.