999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

海洋藻類中甘氨酸甜菜堿的濃度特征與影響因素綜述

2021-11-26 19:26:35宋若晗陸長坤曲克明崔正國趙婉玉胡清靜畢相東
安徽農業科學 2021年21期
關鍵詞:影響因素

宋若晗 陸長坤 曲克明 崔正國 趙婉玉 胡清靜 畢相東

摘要 甘氨酸甜菜堿(GBT)是海洋藻類中廣泛存在的一種含氮滲透調節物質,其被降解后產生的有機胺可通過海氣交換進入大氣中。近年研究表明,大氣中有機胺可以促進新粒子生成及增長,具有潛在重要的氣候效應,因此,海洋環境中有機胺的形成機制越來越受到關注。概述了海洋藻類中GBT合成及其降解為有機胺的途徑,歸納了不同藻類體內GBT的濃度分布特征,探討了影響藻類體內GBT濃度的因素,剖析了該領域待解決的科學問題,并對今后的研究工作進行了展望,以期為提高對海洋環境中有機胺來源的認識提供科學參考。

關鍵詞 甘氨酸甜菜堿;有機胺;海洋藻類;濃度特征;影響因素

中圖分類號 X 173? 文獻標識碼 A

文章編號 0517-6611(2021)21-0019-08

doi:10.3969/j.issn.0517-6611.2021.21.006

開放科學(資源服務)標識碼(OSID):

Summary of Concentration Characteristics and Influencing Factors of Glycine Betaine in Marine Algae

SONG Ruo-han? LU Chang-kun? QU Ke-ming 3 et al

(1.College of Fishery,Tianjin Agricultural University,Tianjin 300392; 2.Yellow Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Key Laboratory of Sustainable Development of Marine Fisheries,Ministry of Agriculture and Rural Affairs,Qingdao,Shandong 266071; 3.Laboratory for Marine Fisheries Science and Food Production Processes,Pilot National Laboratory for Marine Science and Technology (Qingdao),Qingdao,Shandong 266071)

Abstract Glycine betaine (GBT) is a nitrogen containing osmotic adjustment substance widely found in marine algae.The organic amines produced after degradation can enter the atmosphere through sea air exchange.Recent studies have shown that organic amines in the atmosphere can promote the generation and growth of new particles,and have potentially important climate effects.Therefore,the formation mechanism of organic amines in the marine environment has attracted more and more attention.This article outlined the pathways of GBT synthesis and degradation into organic amines in marine algae,summarized the distribution characteristics of GBT in different algae,discussed the factors that affect the concentration of GBT in algae,and analyzed the scientific problems to be solved in this field.The future research work is prospected,hoping to provide a scientific reference for improving the understanding of the sources of organic amines in the marine environment.

Key words Glycine betaine;Organic amines;Marine algae;Concentration characteristics; Influence factors

基金項目 國家重點研發計劃(2019YFD090140 2019YFD0900500);國家自然科學基金青年基金項目(41606097);中國水產科學研究院黃海水產研究所基本科研業務費(20603022020006,2020TD12)。

作者簡介 宋若晗(1996—),女,河北滄州人,碩士研究生,研究方向:海洋氮循環方面。*通信作者:胡清靜,助理研究員,博士,碩士生導師,從事海洋氮循環方面研究;畢相東,教授,博士,碩士生導師,從事養殖水域生態學研究。

收稿日期 2021-06-23;修回日期 2021-07-30

經典CLAW[1]假說認為海洋浮游植物合成的二甲巰基丙酸內鹽(DMSP)會被降解為二甲基硫(DMS),其在大氣中繼續被氧化為甲基磺酸(MSA)及硫酸等,MSA和硫酸進而核化產生新粒子或促進新粒子的增長,對全球氣候變化產生重大影響。但是,近年來CLAW假說受到了科學家的質疑[2-4],因為除了DMSP外,浮游植物還會選擇甘氨酸甜菜堿(GBT)等季胺類化合物作為滲透調節物質[3,5-6]。GBT被細菌降解后會產生三甲胺(TMA),其再進一步被降解為二甲胺(DMA)和一甲胺(MMA)[3,7-8]。有機胺通過海氣交換進入大氣中(其約占全球大氣中有機胺的28%[9]),也能促進大氣中新粒子的生成及顆粒物增長,具有潛在重要的氣候效應[10-12]。盡管大部分研究顯示大氣顆粒物中有機胺鹽的濃度低于甲基磺酸鹽(MSA-)的濃度[13-14],但是,Hu等[15]研究發現在我國近海大氣顆粒物中三甲胺鹽(TMAH+)和二甲胺鹽(DMAH+)濃度是同航次檢測的大氣顆粒物中MSA-濃度的10~60倍[16],因此推測有機胺可能具有更重要的氣候效應。受檢測技術限制,現階段海洋環境中有機胺的形成機制尚不明確。GBT作為有機胺的重要前體物,認識其在海洋藻類體內的濃度特征及影響因素,對認識海洋環境中有機胺的形成機制及其氣候效應具有重要意義。

1 GBT的重要作用

對海洋藻類來說,GBT最重要和最廣泛的作用是滲透調節功能。海洋環境中的藻類常常面臨鹽度、溫度等因素的浮動,GBT的存在可以幫助藻類應對這些脅迫。例如,隨著環境中鹽度的升高,銅綠紫球藻(Porphyridium aerugineum)細胞內的GBT濃度呈線性增加趨勢[17]。這可能是因為在高鹽環境中,GBT可以通過保護并增強細胞內酶活性來保護藻體[18]。在對5種海洋底棲硅藻進行低溫處理時發現細胞內的GBT濃度會明顯升高,其可以作為冷凍保護劑使藻類免受低溫侵害[19]。Mao等[20]觀察到GBT在干燥的條斑紫菜(Porphyra yezoensis)中會快速積累,這一結論證實了GBT在保護藻類應對干旱脅迫方面的作用。在光保護方面,GBT可以通過保護光反應中的第一個蛋白質復合物Photosystem Ⅱ 來增強植物對光脅迫的耐受性[21]。GBT還具有潛在的浮力作用,海洋浮游植物可以通過改變有機滲透物質的濃度和碳水化合物的儲備來改變自身密度。Boyd等[22]提出硅藻可以通過100 mol/m3的季銨化合物以維持其保持位置所需的浮力。在一些植物的生存發育中GBT也發揮作用,GBT在高等植物濱藜(Atriplex halimus L.)中似乎直接參與了葉綠體的保護[23],藻類中低濃度的GBT可以促進作物中葉綠素的生成[24],因而在海藻液體肥料中GBT是重要的化合物,會對植物的生長起到促進作用。因此,在許多海洋藻類中,GBT被認為具有滲透保護、冷凍保護、光保護和潛在的浮力作用,以及保護與促進生長等生物功能[25-27]。

2 海洋藻類中GBT的合成與降解

2.1 GBT的生物合成 藻類中的GBT可以通過自身進行合成,主要分為2種途徑:膽堿氧化途徑和甘氨酸甲基化途徑(圖1)。在膽堿氧化途徑中,膽堿在膽堿脫氫酶(CDH)的催化下氧化為甜菜堿醛,而后在甜菜堿醛脫氫酶(BADH)的作用下氧化為甜菜堿;在甘氨酸甲基化途徑中,甘氨酸在甘氨酸肌醇甲基轉移酶(GSMT)和肌氨酸二甲基甘氨酸甲基轉移酶(SDMT)的催化下,經過3次N-甲基化,分別合成肌氨酸、二甲基甘氨酸和甜菜堿。Mao等[20]研究發現紅藻中的條斑紫菜(Pyropia yezoensis)利用膽堿氧化途徑合成GBT,且該途徑也是嗜鹽藍藻中GBT合成的主要方式[28]。另外,嗜鹽藍藻中的Aphanothece halophytica也可以通過甘氨酸甲基化途徑合成GBT[29]。Kageyama等[30]研究發現硅藻中的偽矮海鏈藻(Thalassiosira pseudonana)也存在以上2種GBT生物合成途徑。

藻類中的GBT也可以通過外部來積累。在嗜鹽藍藻中的Synechocystis DUN52這一物種中存在一種主動運輸系統來積累外源GBT,這一部分的GBT不參與代謝,而是積累到細胞內的GBT池中作為一種內源性滲透調節物質,這可能是嗜鹽藍藻對高鹽脅迫的一種適應機制[31]。

2.2 GBT的降解 藻類中的GBT主要通過被浮游動物攝食、細胞死亡和病毒裂解等方式被釋放[32],并通過細菌被降解,主要包括玫瑰桿菌、SAR11等細菌[8,33]。在GBT的碳元素標記試驗中,發現在短時間內80%的14C-GBT沒有被轉化,推測是海洋細菌快速降解GBT的能力不足和需要保留GBT來維持滲透平衡,而在4~5 h后,大部分GBT就會被海洋細菌所降解,且降解速率受到溫度、鹽度、微生物數量和降解酶濃度等因素的影響[34]。

GBT的降解普遍存在于海洋環境中,包括厭氧降解和有氧降解[35-36](圖1)。由于海水中的氧氣溶解度會隨著海水升溫、高鹽度、高壓力等因素降低,因而海洋中GBT的厭氧降解較為普遍,主要分為2種途徑:①由于海洋沉積物具有低溶氧的特性,海洋沉積物中的GBT可在海洋玫瑰桿菌的作用下厭氧發酵,產生TMA并伴有乙酸鹽的生成,再進一步降解為DMA和MMA[5,8,36]。King[37]研究發現潮間帶沉積物中的GBT被發酵為TMA和乙酸鹽,其中TMA再通過活性硫酸鹽的還原,TMA迅速轉化為甲烷。在厭氧條件下,TMA和其他甲基化胺可以被產甲烷菌降解[38]。因而在海洋沉積物中甲烷的重要來源可能與GBT的分解代謝有關[5]。②GBT在同型乙酸菌與還原劑硫酸鹽的去甲基化作用下,產生二甲基甘氨酸和肌氨酸,再進一步產生TMA等有機胺[8,36,39-40]。

Charlotte[8]認為海洋環境中具有有氧降解GBT能力的細菌較少。而Diaz等[41]研究表明在有氧條件下,海洋細菌MD 14-50對GBT進行連續的去甲基化作用,逐步產生二甲基甘氨酸、肌氨酸,并最終降解為甘氨酸。這可能是由于這些細菌中存在二甲基甘氨酸脫氫酶和肌氨酸氧化酶,但是該途徑無法產生TMA、DMA和MMA[41-43]。

3 海洋藻類中GBT的濃度分布特征

表1中對綠藻、紅藻、褐藻和硅藻等109種藻類中的GBT和DMSP濃度進行了匯總,通過對比發現,藍藻與綠藻中GBT含量在所有門類的藻類中往往是最高的,紅藻與硅藻中GBT含量次之,褐藻中GBT含量則最低。在Mohammad等[44]的檢測中,嗜鹽藍藻中以GBT為主要成分的季胺化合物濃度高達2 430 mmol/L。Blunden等[45]對62種海藻中的GBT和含硫化合物進行了檢測,其中綠藻中GBT含量相對較高,占干重的0.021%~2.040%,綠藻中剛毛藻的主要成分是GBT,而褐藻中的GBT含量較低,僅占干重的0.001%~0100%,在部分綠藻中GBT的含量高褐藻2個數量級。Al-Amoudi等[46]對幾類藻體中GBT濃度進行檢測,在綠藻扁藻中的Tetraselmis marina和Tetraselmis stirata中檢測到最高濃度的GBT(分別為17.8和10.4 pg/cell),且硅藻中的三角褐指藻(Phaeodactylum tricornutum)的GBT含量約是綠藻T.marina中的1/10~1/6。在對我國青島附近海域藻類的檢測中,綠藻和紅藻的GBT水平較高,其中綠藻中鮮滸苔(Enteromorpha prolifera)GBT含量為14.78 mmol/kg,占干重的09%,紅藻中多管藻(Polysiphonia urceolata)GBT含量為743 mmol/kg,褐藻中GBT的水平較低,滸苔GBT的含量是褐藻中海帶(Laminaria japonica)GBT含量的90倍[47]。但是,趙鵬等[48]的檢測中滸苔中GBT的濃度僅是海帶的1.2倍,2份報告中結果的差異可能與檢測的海藻來源不同等因素相關。

通過對表1中綠藻和硅藻的DMSP與GBT含量進行對比,發現綠藻中的部分種類如硬毛藻屬、剛毛藻屬、鈣扇藻屬中的GBT含量超過了DMSP[45,49-50],但在石莼屬、滸苔屬等種類中似乎DMSP濃度更高[47,49-50]。在硅藻中,GBT濃度為<0.01~2.60 pg/cell,DMSP濃度為0.07~0.34 pg/cell,GBT平均濃度約為DMSP平均濃度的4倍,因而推測GBT也是部分硅藻中主要的滲透調節物質[46,51]。

4 影響藻細胞中GBT合成的因素

4.1 鹽度

GBT和DMSP作為海洋藻類重要的滲透調節物質對鹽度響應敏感[17]。室內培養研究中發現,紅藻中的紫球藻(Porphyridium aerngineum)和硅藻中的三角褐指藻(Phaeodactylum tricornutum)、隱秘小環藻(Cyclotella cryptica)、梅尼小環藻(Cyclotella meneghiniana)的細胞內鹽度由150 mol/cm3增加至1 000 mol/cm3時,GBT濃度會增加一個數量級[17]。同樣,藍藻中的GBT也對鹽度響應敏感。嗜鹽藍藻中的Synechocystis DUN52在海水鹽度增加8倍的情況下,以GBT為最主要成分的季胺化合物的增加量為1 200 mmol/dm3[71]。Incharoensakdi等[72]的室內培養中,嗜鹽藍藻中的另一物種Aphanothece halophytica在鹽脅迫下生長6 d,GBT的積累增加了約20倍。因此,許多研究認為嗜鹽藍藻使用GBT來平衡細胞質與外部鹽度[73],體內GBT的積累可能是它們在高鹽環境中存活的重要原因[44,7 74]。在現場觀測中,Hu等[75]研究發現渤海及北黃海的大氣顆粒物中TMAH+、DMAH+粒子的濃度與海水鹽度存在極顯著的正相關。該海域的浮游植物主要以硅藻和藍藻為主[76]。因而推測鹽度的升高會導致該海域中硅藻與藍藻產生的GBT含量增加,GBT降解進而導致大氣中有機胺濃度的升高。

但是,并非所有海洋藻類對鹽度響應敏感,Mulholland等[77]在對高等植物Spartina anglica的培養中,GBT對鹽度變化響應不明顯。鹽度對藻類中GBT含量的影響也被認為與處理時間相關。綠藻中的Chaetomorpha capillaris在24 h內GBT含量隨鹽度無明顯變化[49]。Reed[55]的室內培養中同樣提到藻類中的GBT在短期(24 h)內對鹽度不敏感,GBT合成持續時間較長,只有當藻類長期(30 d)處在高鹽環境中時,GBT才會積累并起到調節滲透壓的作用。這說明不同海洋藻類或藻類的培養時間對鹽度的敏感程度有區別。

4.2 氮營養鹽

雖然GBT與DMSP都是海洋藻類重要的滲透調節物質,但兩者區別在于:GBT是含氮滲透調節物,DMSP是含硫滲透調節物。在海洋生態系統中,氮營養鹽是藻類生長發育所必需的營養元素,也是藻類生長最常見的限制因子之一[78]。Andreae[79]提出,由于海水中硫酸鹽的濃度(約28 mmol/L)遠大于氮營養鹽的濃度(1~10 μmol/L),因而在氮營養鹽限制條件下,氮僅用來滿足藻類的生長,選擇合成更多的含硫化合物DMSP起到滲透調節作用[8,80],并且觀察到GBT與DMSP競爭相同的運輸系統[8,34],因此氮營養鹽濃度的變化會對海洋藻類體內GBT和DMSP的濃度產生影響。室內培養研究中發現,在氮營養鹽充足的條件下,處于指數生長期的金色藻(Chrysochromulina sp.Lackey)體內GBT濃度大于DMSP,而當到達氮營養鹽限制的穩定生長期,GBT濃度大幅下降,但DMSP濃度變化幅度不大[57]。Keller等[81]研究發現,氮營養鹽限制培養條件下,NO3-的增加導致培養的3種藻類偽矮海鏈藻(Thalassiosira pseudonana)、赫氏顆石藻(Emiliania huxleyi)、卡特前溝藻(Amphidinium carterae)中GBT含量增加,其中偽矮海鏈藻、卡特前溝藻體內的氮營養鹽與DMSP呈負相關。在對中肋骨條藻(Skeletonema costatum)的室內培養中發現,高氮營養鹽有利于該硅藻的生長,而細胞中DMSP的水平隨氮營養鹽含量的增加而降低[82]。Gibb等[83]觀測到在以硅藻為優勢種的阿拉伯海上升流海域中有機胺濃度較高,其推測該海域上升流攜帶的大量NO3-、NH4+等無機氮會被硅藻用于GBT的合成,GBT的降解會導致該海域有機胺的濃度升高。在白令海的現場觀測中,氮營養鹽與DMSP呈負相關[84]。在我國的東?,F場觀測發現,當海水中硝酸鹽濃度小于1.0 μmol/L時,海水中的顆粒態DMSP與氮營養鹽呈顯著正相關,當海水中硝酸鹽濃度大于1.0 μmol/L時,顆粒態DMSP與氮營養鹽呈負相關[85]。說明高氮營養鹽可能會促進海洋藻中GBT的生成、而抑制DMSP的合成。Hu等[15]研究發現我國近海大氣顆粒物中有機胺濃度比世界其他海域高1~3個數量級,這可能與我國近海富營養化有關,但還需要現場觀測進一步確認。

有些藻類也不受氮營養鹽的影響。在Van Alstyne等[86]的研究結果中,氮營養鹽對石莼中DMSP的合成沒有顯著影響。也有現場觀測發現浮游植物中DMSP和GBT的增加或減少與氮營養鹽的添加并不呈現顯著的線性關系[87]。推測不同藻類體內GBT對氮營養鹽的響應存在差異性,這可能是與藻類物種和生理狀態的不同相關。

5 展望

綜上所述,雖然目前國內外對海洋藻類體內GBT的合成與降解途徑、濃度特征及影響因素開展了一定的研究,但還有許多問題需要解決,具體體現在以下3點:

(1)提升對多種海洋藻類體內GBT合成途徑的認識。目前國內外僅有少數研究報道了藍藻、硅藻等藻類體內GBT的合成途徑。未來需要通過提高檢測技術,進一步加強對多種海洋藻類體內GBT合成途徑的認識。

(2)探究海洋藻類體內GBT對大氣中有機胺的貢獻。多數研究認為海洋藻類體內的GBT在水體或沉積物中被細菌降解為有機胺,它們再通過海氣交換進入大氣中。但是,少數研究在海洋大氣顆粒物中檢測出GBT[88],因而需要現場及室內模擬試驗進一步探究大氣顆粒物中GBT如何被降解以及是否對大氣中的有機胺具有貢獻。

(3)揭示富營養化海域大氣中有機胺的潛在氣候效應。盡管國際上多數研究發現大氣顆粒物中MSA-的濃度高于有機胺鹽,但是在富營養化的近海(如我國近海海域),有機胺的濃度可能會超越MSA-,具有更重要的氣候效應。因此,未來需要加強認識在氮營養鹽充足的海域,多種海洋藻類體內GBT的變化特征及其對水體及大氣中有機胺的影響,從而揭示富營養化海域有機胺的潛在氣候效應。

參考文獻

[1]

CHARLSON R J,LOVELOCK J E,ANDREAE M O,et al.Oceanic phytoplankton,atmospheric sulphur,cloud albedo and climate[J].Nature,1987,326(6114):655-661.

[2] QUINN P K,BATES T S.The case against climate regulation via oceanic phytoplankton sulphur emissions[J].Nature,201 480(7375):51-56.

[3] GREEN T K,HATTON A D.The claw hypothesis:A new perspective on the role of biogenic sulphur in the regulation of global climate[J].Oceanography and marine biology,2014,52:315-336.

[4] SELLEGRI K,PEY J,ROSE C,et al.Evidence of atmospheric nanoparticle formation from emissions of marine microorganisms[J].Geophysical research letters,2016,43(12):6596-6603.

[5] WELSH D T.Ecological significance of compatible solute accumulation by micro-organisms:From single cells to global climate[J].FEMS Microbiology Reviews,2000,24(3):263-290.

[6] TORSTENSSON A,YOUNG J N,CARLSON L T,et al.Use of exogenous glycine betaine and its precursor choline as osmoprotectants in Antarctic sea-ice diatoms[J].Journal of phycology,2019,55(3):663-675.

[7] CARPENTER L J,ARCHER S D,BEALE R.Ocean-atmosphere trace gas exchange[J].Chemical society reviews,201 41(19):6473-6506.

[8] CHARLOTTE C.Distributions of glycine betaine and the methylamines in coastal waters:Analytical developments and a seasonal study[D].Plymouth,UK:University of Plymouth,2015.

[9] GE X L,WEXLER A S,CLEGG S L.Atmospheric amines-Part I.A review[J].Atmospheric environment,201 45(3):524-546.

[10] ALMEIDA J,SCHOBESBERGER S,KRTEN A,et al.Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere[J].Nature,2013,502(7471):359-363.

[11] CHEN H H,VARNER M E,GERBER R B,et al.Reactions of methanesulfonic acid with amines and ammonia as a source of new particles in air[J].The journal of physical chemistry B,2016,120(8):1526-1536.

[12] YAO L,GARMASH O,BIANCHI F,et al.Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity[J].Science,2018,361(6399):278-281.

[13] FACCHINI M C,DECESARI S,RINALDI M,et al.Important source of marine secondary organic aerosol from biogenic amines[J].Environmental science and technology,2008,42(24):9116-9121.

[14] MLLER C,IINUMA Y,KARSTENSEN J,et al.Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands[J].Atmospheric chemistry and physics,2009,9(24):9587-9597.

[15] HU Q J,YU P R,ZHU Y J,et al.Concentration,size distribution and formation of trimethylaminium and dimethylaminium ions in atmospheric particles over marginal seas of China[J].Journal of the atmospheric sciences,2015,72(9):3487-3498.

[16] ZHANG Y,ZHANG H H,YANG G P,et al.Chemical characteristics and source analysis of aerosol composition over the Bohai Sea and the Yellow Sea in spring and autumn[J].Journal of the atmospheric sciences,2015,72(9):3563-3573.

[17] DICKSON D M J,KIRST G O.Osmotic adjustment in marine eukaryotic algae:The role of inorganic ions,quaternary ammonium,tertiary sulphonium and carbohydrate solutes.I.Diatoms and a rhodophyte[J].New phytologist,1987,106(4):645-655.

[18] SWAPNIL P,SINGH M,SINGH S,et al.Recombinant glycinebetaine improves metabolic activities,ionic balance and salt tolerance in diazotrophic freshwater cyanobacteria[J].Algal research,2015,11:194-203.

[19] SCHOLZ B,LIEBEZEIT G.Compatible solutes and fatty acid composition of five marine intertidal microphytobenthic Wadden Sea diatoms exposed to different temperature regimes[J].Diatom research,2013,28(4):337-358.

[20] MAO Y X,CHEN N C,CAO M,et al.Functional characterization and evolutionary analysis of glycine-betaine biosynthesis pathway in red seaweed Pyropia yezoensis[J].Marine drugs,2019,17(1):70-81.

[21] PRASAD K V S K,SARADHI P P.Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into the chloroplasts[J].Plant science,2004,166(5):1197-1212.

[22] BOYD C,GRADMANN D.Impact of osmolytes on buoyancy of marine phytoplankton[J].Marine biology,200 141(4):605-618.

[23] HASSINE A B,GHANEM M E,BOUZID S,et al.An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L.differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress[J].Journal of experimental botany,2008,59(6):1315-1326.

[24] WHAPHAM C A,BLUNDEN G,JENKINS T,et al.Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract[J].Journal of applied phycology,1993,5(2):231-234.

[25] DICKSON D M,JONES R G,DAVENPORT J.Steady state osmotic adaptation in Ulva lactuca[J].Planta,1980,150(2):158-165.

[26] ASHRAF M,FOOLAD M R.Roles of glycine betaine and proline in improving plant abiotic stress resistance[J].Environmental and experimental botany,2007,59(2):206-216.

[27] BEALE R,AIRS R.Quantification of glycine betaine,choline and trimethylamine N-oxide in seawater particulates:Minimisation of seawater associated ion suppression[J].Analytica chimica acta,2016,938:114-122.

[28] 張英杰,廖子亞,趙百鎖.嗜鹽菌中甘氨酸甜菜堿的合成途徑及其生物學功能[J].微生物學報,2020,60(6):1074-1089.

[29] WADITEE R,TANAKA Y,AOKI K,et al.Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica[J].The journal of biological chemistry,2003,278(7):4932-4942.

[30] KAGEYAMA H,TANAKA Y,TAKABE T.Biosynthetic pathways of glycinebetaine in Thalassiosira pseudonana;functional characterization of enzyme catalyzing three-step methylation of glycine[J].Plant physiology and biochemistry,2018,127:248-255.

[31] MOORE D J,REED R H,STEWART W D P.A glycine betaine transport system in Aphanothece halophytica and other glycine betaine-synthesising cyanobacteria[J].Archives of microbiology,1987,147(4):399-405.

[32] SUN J,MAUSZ M A,CHEN Y,et al.Microbial trimethylamine metabolism in marine environments[J].Environmental microbiology,2019,21(2):513-520.

[33] SUN J,STEINDLER L,THRASH J C,et al.One carbon metabolism in SAR11 pelagic marine bacteria[J].PLoS One,201 6(8):1-12.

[34] KIENE R P.Uptake of choline and its conversion to glycine betaine by bacteria in estuarine waters[J].Applied and environmental microbiology,1998,64(3):1045-1051.

[35] BERNARD T,POCARD J A,PERROUND B,et al.Variations in the response of salt-stressed Rhizobium strains to betaines[J].Archives of microbiology,1986,143(4):359-364.

[36] CHEN Y.Comparative genomics of methylated amine utilization by marine Roseobacter clade bacteria and development of functional gene markers (tmm,gmaS)[J].Environmental microbiology,201 14(9):2308-2322.

[37] KING G M.Metabolism of trimethylamine,choline,and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments[J].Applied and environmental microbiology,1984,48(4):719-725.

[38] OREN A.Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments[J].Antonie van leeuwenhoek,1990,58(4):291-298.

[39] CHEN Y,PATEL N A,CROMBIE A,et al.Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase[J].Proceedings of the national academy of sciences,201 108(43):17791-17796.

[40] MLLER E,FAHLBUSCH K,WALTHER R,et al.Formation of N,N-dimethylglycine,acetic acid,and butyric acid from betaine by Eubacterium limosum[J].Applied and environmental microbiology,198 42(3):439-445.

[41] DIAZ M R,VISSCHER P T,TAYLOR B F.Metabolism of dimethylsulfoniopropionate and glycine betaine by a marine bacterium[J].FEMS Microbiology Letters,199 96(1):61-65.

[42] DONG H P,HONG Y G,LU S H,et al.Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea[J].Environmental microbiology reports,2014,6(6):683-695.

[43] HEIJTHUIJSEN J H F G,HANSEN T A.Betaine fermentation and oxidation by marine Desulfuromonas strains[J].Applied and environmental microbiology,1989,55(4):965-969.

[44] MOHAMMAD F A A,REED R H,STEWART W D P.The halophilic cyanobacterium Synechocystis DUN52 and its osmotic responses[J].FEMS Microbiology Letters,1983,16(2/3):287-290.

[45] BLUNDEN G,SMITH B E,IRONS M W,et al.Betaines and tertiary sulphonium compounds from 62 species of marine algae[J].Biochemical systematics and ecology,199 20(4):373-388.

[46] AL-AMOUDI O A,ALI A Y.Some practical aspects of measurements of betaines and their sulphur analogues by the use of HPLC[J].Journal of microbiological methods,1989,10(4):289-296.

[47] 韓麗君,范曉,周永航.海藻中甜菜堿的研究[J].海洋科學集刊,1999,41(00):86-91.

[48] 趙鵬,徐繼林,劉雪梅,等.海帶等4種大型海藻中甜菜堿液質分析研究[J].中國藥學雜志,201 46(24):1886-1889.

[49] CHUDEK J A,FOSTER R,MOORE D J,et al.Identification and quantification of Methylated Osmolytes in algae using Proton Nuclear Magnetic Resonance Spectroscopy[J].British phycological journal,1987,22(2):169-173.

[50] VAN ALSTYNE K L.The distribution of DMSP in green macroalgae from northern New Zealand,eastern Australia and southern Tasmania[J].Journal of the marine biological association of the UK,2008,88(4):799-805.

[51] SPIELMEYER A,GEBSER B,POHNERT G.Dimethylsulfide sources from microalgae:Improvement and application of a derivatization-based method for the determination of dimethylsulfoniopropionate and other zwitterionic osmolytes in phytoplankton[J].Marine chemistry,201 124(1/2/3/4):48-56.

[52] BLUNDEN G,EL BAROUNI M M,GORDON S M,et al.Extraction,purification and characterisation of Dragendorff-positive compounds from some British marine algae[J].Botanica marina,198 24(8):451-456.

[53] VALVERDE J,HAYES M,MCLOUGHLIN P,et al.Cardioprotective potential of irish macroalgae:Generation of glycine betaine and dimethylsulfoniopropionate containing extracts by accelerated solvent extraction[J].Planta medica,2015,81(8):679-684.

[54] HORI K,YAMAMOTO T,MIYAZAWA K,et al.Distribution of quaternary ammonium bases in seven species of marine algae[J].Journal of the faculty of applied biological science hiroshima nuiversity,1979,18(1):65-73.

[55] REED R H.Osmotic adjustment and organic solute accumulation in Chaetomorpha capillaris[J].British phycological journal,1989,24(1):21-37.

[56] BLUNDEN G,GORDON S M,MCLEAN W F H,et al.The distribution and possible taxonomic significance of quaternary ammonium and other Dragendorff-positive compounds in some genera of marine algae[J].Botanica marina,198 25(12):563-568.

[57] KELLER M D,KIENE R P,MATRAI P A,et al.Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton.I.Batch cultures[J].Marine biology,1999,135(2):237-248.

[58] DICKSON D M J,KIRST G O.The role of β-dimethylsulphoniopropionate,glycine betaine and homarine in the osmoacclimation of Platymonas subcordiformis[J].Planta,1986,167(4):536-543.

[59] ZHANG X H,LIU J,LIU J L,et al.Biogenic production of DMSP and its degradation to DMS-their roles in the global sulfur cycle[J].Science China life sciences,2019,62(10):1296-1319.

[60] KELLER M D,BELLOWS W K,GUILLARD R R L.Dimethyl sulfide production in marine phytoplankton[M]//ACS symposium series.Washington,DC:American Chemical Society,1989:167-182.

[61] SCIUTO S,CHILLEMI R,PIATTELLI M.Onium compounds from the red alga Pterocladia capillacea[J].Journal of natural products,1988,51(2):322-325.

[62] PATTI A,MORRONE R,CHILLEMI R,et al.Thetines and betaines of the red alga Digenea simplex[J].Journal of natural products,1993,56(3):432-435.

[63] MACKINNON S L,HILTZ D,UGARTE R,et al.Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts[J].Journal of applied phycology,2010,22(4):489-494.

[64] BLUNDEN G,CRIPPS A L,GORDON S M,et al.The characterisation and quantitative estimation of betaines in commercial seaweed extracts[J].Botanica marina,1986,29(2):155-160.

[65] LYON B R,LEE P A,BENNETT J M,et al.Proteomic analysis of a sea-ice diatom:Salinity acclimation provides new insight into the dimethylsulfoniopropionate production pathway[J].Plant physiology,201 157(4):1926-1941.

[66] CURSON A R J,WILLIAMS B T,PINCHBECK B J,et al.DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton[J].Nature microbiology,2018,3(4):430-439.

[67] KETTLES N L,KOPRIVA S,MALIN G.Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity,proteomics and gene expression analyses on cells acclimating to changes in salinity,light and nitrogen[J].PLoS One,2014,9(4):1-11.

[68] VAIRAVAMURTHY A,ANDREAE M O,IVERSON R L.Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations[J].Limnology and oceanography,1985,30(1):59-70.

[69] STEFELS J,VAN BOEKEL W H M.Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp.[J].Marine ecology progress series,1993,97(1):11-18.

[70] DACEY J W H,WAKEHAM S G.Oceanic dimethylsulfide:Production during zooplankton grazing on phytoplankton[J].Science,1986,233(4770):1314-1316.

[71] REED R H,CHUDEK J A,FOSTER R,et al.Osmotic adjustment in cyanobacteria from hypersaline environments[J].Archives of microbiology,1984,138(4):333-337.

[72] INCHAROENSAKDI A,WUTIPRADITKUL N.Accumulation of glycinebetaine and its synthesis from radioactive precursors under salt-stress in the cyanobacterium Aphanothece halophytica[J].Journal of applied phycology,1999,11(6):515-523.

[73] OREN A.Diversity of organic osmotic compounds and osmotic adaptation in cyanobacteria and algae[M]//SECKBACH J.Algae and cyanobacteria in extreme environments.Dordrecht:Springer,2007:639-655.

[74] REED R H,STEWART W D P.Osmotic adjustment and organic solute accumulation in unicellular cyanobacteria from freshwater and marine habitats[J].Marine biology,1985,88(1):1-9.

[75] HU Q J,QU K M,GAO H W,et al.Large increases in primary trimethylaminium and secondary dimethylaminium in atmospheric particles associated with cyclonic eddies in the northwest Pacific Ocean[J].Journal of geophysical research:Atmospheres,2018,123(21):12133-12146.

[76] ZHANG S,LENG X Y,FENG Y Y,et al.Ecological provinces of spring phytoplankton in the Yellow Sea:Species composition[J].Acta oceanologica sinica,2016,35(8):114-125.

[77] MULHOLLAND M M,OTTE M L.The effects of nitrogen supply and salinity on DMSP,glycine betaine and proline concentrations in leaves of Spartina anglica[J].Aquatic botany,200 72(2):193-200.

[78] ZEHR J P,KUDELA R M.Nitrogen cycle of the open ocean:From genes to ecosystems[J].Annual review of marine science,201 3(1):197-225.

[79] ANDREAE M O.The ocean as a source of atmospheric sulfur compounds[M]//BUAT-MENARD P.The role of air-sea exchange in geochemical cycling.Dordrecht,USA:D.Reidel Publishing Company,1986:331-362.

[80] LISS P S,HATTON A D,MALIN G,et al.Marine sulphur emissions[J].Philosophical transactions of the royal society B biological sciences,1997,352(1350):159-169.

[81] KELLER M D,KIENE R P,MATRAI P A,et al.Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton.II.N-limited chemostat cultures[J].Marine biology,1999,135(2):249-257.

[82] YANG G P,LI C X,SUN J.Influence of salinity and nitrogen content on production of dimethylsulfoniopropionate(DMSP) and dimethylsulfide (DMS) by Skeletonema costatum[J].Chinese journal of oceanology and limnology,2011(2):378-386.

[83] GIBB S W,MANTOURA R F C,LISS P S,et al.Distributions and biogeochemistries of methylamines and ammonium in the Arabian Sea[J].Deep-sea research part II,1999,46(3/4):593-615.

[84] LI C X,WANG B D,YANG G P,et al.Occurrence and turnover of biogenic sulfur in the Bering Sea during summer[J].Journal of geophysical research:Oceans,2017,122(11):8567-8592.

[85] JIAO N Z,LIU C Z,HONG H S,et al.Dynamics of dimethylsulfide and dimethylsulfoniopropionate produced by phytoplankton in the Chinese seas-distribution patterns and affecting factors[J].Acta botanica sinica,2003,45(7):774-786.

[86] VAN ALSTYNE K L,KOELLERMEIER L,NELSON T A.Spatial variation in dimethylsulfoniopropionate (DMSP) production in Ulva lactuca (Chlorophyta) from the Northeast Pacific[J].Marine biology,2007,150(6):1127-1135.

[87] KELLER M D,MATRAI P A,KIENE R P,et al.Responses of coastal phytoplankton populations to nitrogen additions:Dynamics of cell-associated dimethylsulfoniopropionate (DMSP),glycine betaine (GBT),and homarine[J].Canadian journal of fisheries and aquatic sciences,2004,61(5):685-699.

[88] DALLOSTO M,OVADNEVAITE J,PAGLIONE M,et al.Antarctic sea ice region as a source of biogenic organic nitrogen in aerosols[J].Scientific reports,2017,7(1):6047-6056.

猜你喜歡
影響因素
房地產經濟波動的影響因素及對策
零售銀行如何贏得客戶忠誠度
醫保政策對醫療服務價格影響因素的探討
東林煤礦保護層開采瓦斯抽采影響因素分析
影響農村婦女政治參與的因素分析
高新技術企業創新績效影響因素的探索與研究
水驅油效率影響因素研究進展
突發事件下應急物資保障能力影響因素研究
中國市場(2016年36期)2016-10-19 03:54:01
環衛工人生存狀況的調查分析
中國市場(2016年35期)2016-10-19 02:30:10
農業生產性服務業需求影響因素分析
商(2016年27期)2016-10-17 07:09:07
主站蜘蛛池模板: 国产亚洲视频免费播放| 又大又硬又爽免费视频| 久热99这里只有精品视频6| 国产亚洲一区二区三区在线| 中文字幕66页| 久久久噜噜噜| 日韩高清成人| 亚洲国产日韩一区| AV色爱天堂网| 国产欧美日韩综合在线第一| 伊人久综合| 视频在线观看一区二区| 国产人妖视频一区在线观看| 婷婷六月天激情| 欧美日韩v| 国产白浆在线观看| 国产精品深爱在线| 人妻出轨无码中文一区二区| 一级成人a毛片免费播放| 农村乱人伦一区二区| 成人在线观看不卡| 成人免费一级片| 伊人国产无码高清视频| 国产成人精彩在线视频50| 一本大道无码日韩精品影视 | 77777亚洲午夜久久多人| 欧美视频二区| 国产丰满成熟女性性满足视频| 国产精品丝袜视频| 亚洲天堂精品视频| 凹凸国产熟女精品视频| 亚洲毛片网站| 久久精品嫩草研究院| 国产一级小视频| 国产激情国语对白普通话| 精品国产美女福到在线直播| 国产精品无码翘臀在线看纯欲| 91精品国产自产91精品资源| 精品国产中文一级毛片在线看| 综合亚洲色图| 国产一级精品毛片基地| 三上悠亚一区二区| 国产高清又黄又嫩的免费视频网站| 中文字幕久久亚洲一区 | 久青草国产高清在线视频| 91久久偷偷做嫩草影院电| 免费可以看的无遮挡av无码| 国产成人永久免费视频| 久久综合AV免费观看| 亚洲国产欧美国产综合久久| …亚洲 欧洲 另类 春色| 国产麻豆福利av在线播放| 亚洲一区二区约美女探花| 欧美午夜在线观看| 97青草最新免费精品视频| 日本高清成本人视频一区| 色悠久久久| 影音先锋丝袜制服| 成人一区专区在线观看| 毛片网站在线播放| 情侣午夜国产在线一区无码| 日本免费精品| 国产99视频在线| 美女被躁出白浆视频播放| 蜜臀av性久久久久蜜臀aⅴ麻豆| 老司机aⅴ在线精品导航| 欧美a在线视频| 99热这里只有精品5| 欧美日一级片| 日韩高清在线观看不卡一区二区| 五月六月伊人狠狠丁香网| 日韩精品成人在线| 亚洲女同一区二区| 专干老肥熟女视频网站| 国产主播喷水| 国产麻豆aⅴ精品无码| 一级毛片基地| 免费99精品国产自在现线| 亚洲人成网站观看在线观看| 亚洲国产天堂在线观看| 国产日本欧美在线观看| 亚洲一区二区三区麻豆|