耿欣 郭勇 陳余 王梁 倪和民 盛熙暉 王相國(guó) 邢凱 肖龍菲 齊曉龍
摘要 精子凋亡廣泛存在于精液凍融過程,冷應(yīng)激或氧化應(yīng)激刺激及獲能樣變化均可引起精子凋亡。產(chǎn)生凋亡樣變化的精子其結(jié)構(gòu)、線粒體功能、膜電位、DNA完整性和參與凋亡反應(yīng)的蛋白均發(fā)生變化,導(dǎo)致精子死亡率升高,活率下降。簡(jiǎn)述了凍融過程中精子凋亡的成因及抗凍保護(hù)劑的研究進(jìn)展,以期為進(jìn)一步提高凍融后的精子質(zhì)量提供理論參考。
關(guān)鍵詞 精子;凍融過程;凋亡;抗凍保護(hù)劑;研究進(jìn)展
中圖分類號(hào) S 814? 文獻(xiàn)標(biāo)識(shí)碼 A
文章編號(hào) 0517-6611(2022)03-0019-03
doi:10.3969/j.issn.0517-6611.2022.03.005
Research Progress on Sperm Apoptosis Induced by Freezing and Thawing Process and Cryoprotectants
GENG Xin1,GUO Yong1,CHEN Yu2 et al
(1.School of Animal Science and Technology, Beijing Agricultural College, Beijing 102206;2.Beijing Animal Husbandry Station, Beijing 100107)
Abstract Sperm apoptosis is widespread in the process of semen freezing and thawing.Cold stress or oxidative stress stimulation and capacitation-like changes can cause sperm apoptosis.The sperm with apoptosis-like changes changes in its structure,mitochondrial function,membrane potential,DNA integrity,and proteins involved in the apoptotic response,resulting in increased sperm mortality and decreased sperm viability.This paper briefly describes the causes of sperm apoptosis during freezing and thawing and the research progress of cryoprotectants,in order to provides a theoretical reference for further improving the quality of sperm after freezing and thawing.
Key words Sperm;Freeze-thaw process;Apoptosis;Antifreeze protectant;Research progress
基金項(xiàng)目 現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系北京市家禽創(chuàng)新團(tuán)隊(duì)項(xiàng)目(BAIC04-2020);“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0700201);2020年農(nóng)業(yè)科技項(xiàng)目-科技創(chuàng)新服務(wù)能力建設(shè)-農(nóng)業(yè)科技新星計(jì)劃項(xiàng)目(20200210);北京市農(nóng)委“菜籃子”新型生產(chǎn)經(jīng)營(yíng)主體科技能力提升工程(2018) 。
作者簡(jiǎn)介 耿欣(1997—),女,北京人,碩士,從事家禽營(yíng)養(yǎng)調(diào)控與繁殖研究。通信作者,副教授,博士,從事家禽營(yíng)養(yǎng)調(diào)控與繁殖研究。
收稿日期 2021-01-22
精子冷凍保存有助于動(dòng)物種質(zhì)資源的運(yùn)輸和儲(chǔ)存,以用于人工授精和其他先進(jìn)的輔助生殖技術(shù),為保種育種工作提供便捷,還可降低畜牧場(chǎng)生產(chǎn)成本。目前,冷凍保存技術(shù)在豬和牛等哺乳動(dòng)物上比較成熟。由于凍融過程會(huì)造成精子結(jié)構(gòu)和代謝發(fā)生變化,導(dǎo)致精子利用率顯著降低。冷凍-解凍過程會(huì)導(dǎo)致精子膜破裂或褶皺、頂體暴露或脫落以及線粒體發(fā)生腫脹[1],超低溫保存還會(huì)降低精子膜的流動(dòng)性[2],而添加抗凍保護(hù)劑可以有效改善精子損傷。此外,細(xì)胞凋亡也發(fā)生于精子凍融過程中,凋亡精子常常伴隨著頂體損傷、中段缺陷和產(chǎn)生細(xì)胞質(zhì)滴等結(jié)構(gòu)變化,并與線粒體代謝之間存在顯著相關(guān)性,同時(shí)凋亡的產(chǎn)生也會(huì)直接影響凍融后精子參數(shù)以及受精率[3]。因此,研究精子凍融過程中凋亡的分子機(jī)制,開發(fā)新型抗凍保護(hù)劑具有重要的理論和實(shí)踐意義。
1 冷凍-解凍誘導(dǎo)的精子凋亡
1.1 凍融過程中線粒體的損傷
線粒體作為細(xì)胞凋亡的內(nèi)源途徑級(jí)聯(lián)中心,直接參與精子在凍融過程中受到的損傷。精子線粒體與體細(xì)胞線粒體結(jié)構(gòu)一致,僅數(shù)量相對(duì)較少。在精子發(fā)生過程中,線粒體隨細(xì)胞質(zhì)的流失而減少,剩余22~75條線粒體集中在精子中段[4]。精子冷凍-解凍過程會(huì)嚴(yán)重破壞線粒體結(jié)構(gòu),研究表明,精子在凍融后含有完整線粒體膜電位的活精子數(shù)顯著降低[5]。線粒體膜電位的完整性直接影響線粒體功能,膜電位的變化也是細(xì)胞凋亡級(jí)聯(lián)反應(yīng)的起始步驟。在Bcl-2家族蛋白的作用下,線粒體通透性轉(zhuǎn)換孔打開,使得凋亡因子釋放到胞質(zhì)中觸發(fā)凋亡級(jí)聯(lián)反應(yīng)。體外添加線粒體通透性轉(zhuǎn)換孔抑制劑可顯著降低解凍后精子caspases活性,提高解凍精子線粒體膜電位,提示抑制線粒體通透性轉(zhuǎn)換孔可有效減少精子超低溫保存過程中的“凋亡樣”變化[6]。凍融過程還可引起精子線粒體膜破裂,從而釋放細(xì)胞色素C,其與凋亡蛋白酶激活因子結(jié)合并活化caspases蛋白,最終致使染色質(zhì)凝聚與核破裂[7]。此外,精子低溫保存引起的質(zhì)膜損傷還與細(xì)胞內(nèi)Ca2+濃度升高有關(guān),低溫引起線粒體大量攝取Ca2+,線粒體Ca2+含量增加引起線粒體膜通透性增加,導(dǎo)致線粒體基質(zhì)腫脹,外膜破裂,促凋亡因子釋放,最終導(dǎo)致細(xì)胞凋亡[8]。線粒體是產(chǎn)生活性氧(ROS)的主要細(xì)胞器之一,ROS在一定程度上可以調(diào)節(jié)精子獲能和頂體反應(yīng),但過量的ROS會(huì)導(dǎo)致精子存活率、運(yùn)動(dòng)性、線粒體膜電位降低,以及DNA損傷、形態(tài)學(xué)缺陷和脂質(zhì)過氧化的增加,加速精子的凋亡[9]。由此可見,線粒體損傷是導(dǎo)致精子凋亡的重要因素,保護(hù)線粒體結(jié)構(gòu)的完整性是防止精子凋亡的重要途徑。
1.2 凍融過程中凋亡標(biāo)記的產(chǎn)生
凍融過程凋亡標(biāo)記物呈上升趨勢(shì),包括caspase活性升高,磷脂酰絲氨酸(PS)向膜外轉(zhuǎn)移,線粒體膜電位的降低(早期標(biāo)記)和DNA損傷(晚期標(biāo)記)[10]。在冷凍-解凍后PS外化精子的百分比增加,導(dǎo)致精子中大部分壞死細(xì)胞解體[11], PS外化還可受細(xì)胞色素C的介導(dǎo)[12]。研究表明,導(dǎo)致精子DNA斷裂的主要途徑是凋亡過程,故DNA斷裂也可作為精子凋亡的晚期標(biāo)志,但目前精子DNA斷裂的作用機(jī)制有待闡明。此外,精子凍融過程會(huì)使精子產(chǎn)生獲能反應(yīng),進(jìn)而導(dǎo)致精子凋亡。精子質(zhì)膜會(huì)產(chǎn)生獲能樣改變以及蛋白質(zhì)酪氨酸磷酸化,該變化在精子凍融后尤為明顯[13]。在凍融過程中精子可能通過cAMP-PKA途徑進(jìn)行酪氨酸磷酸化(獲能標(biāo)記),同時(shí)也解釋了凍融獲能可能會(huì)導(dǎo)致細(xì)胞凋亡[14]。凋亡標(biāo)記的發(fā)現(xiàn)為改善凍融后的精液品質(zhì)提供了新思路。
1.3 凍融過程中凋亡蛋白的作用
1.3.1 caspases蛋白的作用。
精子中caspases的存在是細(xì)胞凋亡的重要標(biāo)志之一,同時(shí)也是調(diào)控細(xì)胞凋亡的關(guān)鍵蛋白。研究顯示,caspases蛋白家族中共9種蛋白參與細(xì)胞凋亡,根據(jù)其結(jié)構(gòu)功能的不同可分為“啟動(dòng)子”(caspases-2、caspases-8、caspases-9、caspases-10、caspases-12)和“效應(yīng)子”(caspases-3、caspases-6、caspases-7、caspases-14)[15]。在死亡受體激活的生物反應(yīng)下誘導(dǎo)啟動(dòng)子自激活,繼而通過蛋白質(zhì)分解或次級(jí)信使機(jī)制直接或間接激活下游caspases(效應(yīng)caspases)。當(dāng)啟動(dòng)子caspases激活時(shí),同時(shí)激活效應(yīng)子裂解細(xì)胞內(nèi)的蛋白質(zhì)和DNA完成細(xì)胞凋亡程序[16]。在成熟精子中caspases主要集中在頂體管和細(xì)胞核周圍,caspase-3、caspase-8的表達(dá)相對(duì)較高,caspase-3是最為關(guān)鍵的效應(yīng)子[17]。人精子凍融后可檢測(cè)出caspase-3前體及其活性亞基、caspase-8的前體和活化酶、半胱氨酸天冬氨酸蛋白酶-9前體、活性酶和35 kDa信號(hào)[18]。精子凍融過程中的過度氧化應(yīng)激也會(huì)觸發(fā)凋亡,使得精子中caspase-3蛋白的表達(dá)量顯著升高[19]。同時(shí)caspases還是凋亡小體的組成成分,且凋亡小體的數(shù)量與caspase-3活性呈正相關(guān)[20]。精液平衡3 h后即可表現(xiàn)出caspase活性[21],冷凍解凍后,較高比例的精子顯示出caspase活性,caspases陽性的活精子占30.2%~70.7%,死精子占7.3%~24.0%,且具有caspases蛋白活性的活精子與線粒體膜電位呈負(fù)相關(guān)[22]。有研究表明,凍融過程中的caspase-3活化和DNA斷裂最終導(dǎo)致了精子細(xì)胞的凋亡[23]。通過抑制調(diào)控精子凋亡的核心蛋白酶caspase,可顯著降低獲能精子和磷酸化精子數(shù)[24]。caspases抑制劑處理可提高精子活力和線粒體膜電位,減少精子DNA斷裂[6]。caspases依賴的凋亡機(jī)制可能起源于細(xì)胞質(zhì)液滴或線粒體內(nèi),并在細(xì)胞核發(fā)揮作用。caspases的存在還可能增加PS易位和DNA斷裂[25]。caspase依賴和獨(dú)立的凋亡機(jī)制在精子中的作用需要進(jìn)一步分析,了解這些機(jī)制可能為操縱精子凋亡以提高凍融后精子質(zhì)量提供新的思路。
1.3.2 Bcl-2家族蛋白的作用。Bcl-2調(diào)控精子凋亡主要作用于線粒體,該家族蛋白至少包括18個(gè)成員,但目前在精子凋亡中可能直接發(fā)揮作用的包括促凋亡蛋白Bid、Bak和Bax以及抗凋亡蛋白Bcl-2,各蛋白之間可相互作用調(diào)節(jié)細(xì)胞凋亡過程。Bid從外源性死亡受體途徑接收凋亡信號(hào),并通過其切割產(chǎn)物截短Bid(tBid)將其傳遞到線粒體激活內(nèi)源凋亡途徑。Bax和Bak蛋白被認(rèn)為是細(xì)胞凋亡的核心,是調(diào)節(jié)線粒體通透性關(guān)鍵效應(yīng)器,也是線粒體功能障礙導(dǎo)致精子凋亡的關(guān)鍵因子[26]。線粒體外膜的Bax或Bak寡聚形成小孔,釋放細(xì)胞色素C并打開通透性轉(zhuǎn)換孔復(fù)合體[23]。Bcl-2作為抗凋亡蛋白對(duì)精子的凋亡有抑制作用,其可抑制Bax和Bak的相互作用,減少通透性轉(zhuǎn)換孔的開放。在凋亡的精母細(xì)胞中發(fā)現(xiàn)Bcl-2/Bax比值有降低趨勢(shì)[27],而后通過調(diào)節(jié)Bax和Bcl-2的表達(dá)可以減少精子凋亡,提高精子活力和卵裂率[28]。由此可見,精子凋亡一定程度上受控于Bcl-2/Bax比例。相關(guān)試驗(yàn)并未在凍融后的精子中檢測(cè)到抗凋亡因子Bcl-2的存在,但體外單獨(dú)添加Bcl-2可以有效降低凋亡率[21]。此外,Bik可以通過促進(jìn)細(xì)胞內(nèi)Ca2+的釋放,破壞線粒體膜的通透性[16],間接破壞線粒體結(jié)構(gòu)影響凋亡的產(chǎn)生。上述研究表明,Bcl-2蛋白家族對(duì)精子凋亡具有調(diào)控作用,但具體的作用機(jī)制尚不明確,有待于進(jìn)一步深入研究。
2 抗凍保護(hù)劑
2.1 常規(guī)抗凍保護(hù)劑
常規(guī)抗凍保護(hù)劑如甘油、二甲基亞砜(DMSO)和乙二醇等在生產(chǎn)上均可提高精子凍融后的使用效率。甘油作為一種滲透性抗凍保護(hù)劑,可進(jìn)入精子膜內(nèi)與水分結(jié)合降低冷凍液的滲透壓,進(jìn)而對(duì)精子起保護(hù)作用[29-30]。近期研究表明,甘油還可通過抑制caspase-2、caspase-8、caspase-13的表達(dá)進(jìn)而抑制凋亡的產(chǎn)生[31],但高濃度甘油可促進(jìn)精子凋亡產(chǎn)生,其原因可能通過對(duì)線粒體的直接毒性作用而激活caspases[18]。DMSO作為一種滲透性低溫保護(hù)劑,可替代甘油提高精子解凍后精液質(zhì)量和繁殖能力,有效避免甘油的毒性作用[32],還可抑制caspase-2和caspase-8的表達(dá)[31]。此外,添加乙二醇也可以顯著提高精子線粒體完整性、精子活率,被認(rèn)為是另一種可替代甘油的精液冷凍保護(hù)劑[33]。但是常規(guī)抗凍保護(hù)劑對(duì)精子的保護(hù)作用是有限的,同時(shí)添加抗氧化劑可以更有效地提高凍融后精子質(zhì)量。
2.2 抗氧化劑
抗氧化劑的使用可很大程度降低線粒體損傷,從而減少凋亡的產(chǎn)生。常見的抗氧化劑包括維生素C和輔酶Q10等均對(duì)精子凋亡有抑制作用。在精子玻璃化冷凍前添加維生素C有利于改善精子質(zhì)量,防止精子染色質(zhì)異常和精子凋亡[34]。補(bǔ)充1~2 μmol/L輔酶Q10也可顯著提高凍融后精子質(zhì)量和生育率,但對(duì)DNA斷裂和精子形態(tài)無影響[35]。添加維生素D顯著降低凋亡率[36]。此外,白藜蘆醇、左旋肉堿和姜黃素等抗氧化劑對(duì)精子凋亡亦有顯著的抑制作用。白藜蘆醇可顯著提高凍融后精子線粒體膜電位,降低ROS的產(chǎn)生和凋亡樣改變[37],還可降低凋亡因子Fas、P53、TNF-α、Bax、caspase-3、caspase-8、caspase-9的表達(dá)量,提高Bcl-2表達(dá)量[38]。體外添加左旋肉堿亦可提高精子質(zhì)量、精子染色質(zhì)完整性和頂體完整性,下調(diào)Bax表達(dá),上調(diào)Bcl-2表達(dá),提高線粒體活性,抑制精子凋亡[13]。添加姜黃素可降低凍融后精子的氧化應(yīng)激和脂質(zhì)過氧化,增強(qiáng)抗凋亡蛋白表達(dá)量[39]。直接添加超氧化物歧化酶(SOD)、谷胱甘肽過氧化物酶(GSH-Px)和過氧化氫酶(CAT)等抗氧化酶也可改善精子質(zhì)量,減少凋亡的產(chǎn)生,抗凍效果優(yōu)于蛋黃和甘油[40]。此外,添加適宜濃度 GSH可降低精子DNA片段化的百分比,提高精子線粒體膜電位,GSH可通過干擾精子的凋亡和超低溫獲能途徑,利于精子存活,從而保護(hù)精子免受超低溫保存的負(fù)面影響[41]??傮w而言,抗氧化劑可有效減少精子凋亡的產(chǎn)生,提高精子結(jié)構(gòu)的完整性,進(jìn)而改善精液品質(zhì)。
2.3 其他新型抗凍保護(hù)劑
凋亡的產(chǎn)生主要受精子內(nèi)凋亡因子的調(diào)節(jié),通過抑制凋亡蛋白的表達(dá)可有效降低凋亡的產(chǎn)生。PTD-FNK為Bcl-xL蛋白的突變體,向精液稀釋液中添加不同濃度的PTD-FNK可有效抑制caspases活性[42]。添加5 μmol/L的Bcl-2可提高精子解凍后的質(zhì)量,而且對(duì)精子凍前質(zhì)量無影響。此外,添加2 mg/mL肌醇可有效提高冷凍-解凍后的精子質(zhì)量,提高精子的總抗氧化能力,減少DNA片段化[43]。在精液稀釋液中添加12.5~25.0 ng/mL松弛素,也可顯著提高精子線粒體膜電位,并降低凋亡細(xì)胞的百分比,但對(duì)質(zhì)膜和DNA完整性沒有影響[44]。一些合成類材料也對(duì)凍融導(dǎo)致的凋亡有抑制作用,由銅-半胱氨酸配合物和納米白蛋白組成的超氧化物歧化酶模擬納米酶(NA Cu-Cys)可有效防止精子冷凍引起的氧化應(yīng)激,提高精子活力,抑制細(xì)胞凋亡[45]。添加濃度為1.0 mg/mL的硒納米顆粒,可改善荷斯坦公牛解凍后的精子質(zhì)量,通過減少細(xì)胞凋亡、脂質(zhì)過氧化和精子損傷,提高體內(nèi)受精率[46]。κ-卡拉膠是從海藻中提煉出的膠體,試驗(yàn)表明體外添加κ-卡拉膠可有助于提高精子活力和頂體完整性,防止細(xì)胞凋亡[47]。由此可見,新型抗凍保護(hù)劑的研發(fā)進(jìn)一步提高了精子凍融后的質(zhì)量,但其抗凋亡作用機(jī)制仍有待于進(jìn)一步研究。
3 小結(jié)
綜上所述,凍融后精子質(zhì)量的下降與線粒體介導(dǎo)的細(xì)胞凋亡通路存在相關(guān)性,冷凍保存可破壞線粒體結(jié)構(gòu)釋放凋亡蛋白及因子誘導(dǎo)精子凋亡,精子凋亡的產(chǎn)生伴隨著精子結(jié)構(gòu)的破壞,對(duì)凍融后精子質(zhì)量有負(fù)面作用。而對(duì)于凋亡的產(chǎn)生,一些抗凍保護(hù)劑可直接抑制凋亡蛋白的表達(dá)、抗氧化劑則可以通過保護(hù)線粒體的完整性間接抑制凋亡的產(chǎn)生。隨著研究的深入,學(xué)者已經(jīng)逐漸認(rèn)識(shí)到線粒體介導(dǎo)的細(xì)胞凋亡對(duì)提高精子凍融后質(zhì)量的重要性,深入研究線粒體途徑的細(xì)胞凋亡與各精子質(zhì)量參數(shù)的聯(lián)系有助于抗凍保護(hù)劑的開發(fā),進(jìn)而提高冷凍-解凍后精子質(zhì)量。
參考文獻(xiàn)
[1] HOLT W V,HEAD M F,NORTH R D.Freeze-induced membrane damage in ram spermatozoa is manifested after thawing:Observations with experimental cryomicroscopy[J].Biology of reproduction,1992,46(6):1086-1094.
[2] BLESBOIS E,GRASSEAU I,SEIGNEURIN F.Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation[J].Reproduction,2005,129(3):371-378.
[3] AZIZ N,SAID T,PAASCH U,et al.The relationship between human sperm apoptosis,morphology and the sperm deformity index[J].Human reproduction,2007,22(5):1413-1419.
[4] AMARAL A,LOURENC’O B,MARQUES M,et al.Mitochondria functionality and sperm quality[J].Reproduction,2013,146(5):R163-R174.
[5] SOWIN′SKA M,LISZEWSKA E,JUDYCKA S,et al.Mitochondrial membrane potential and reactive oxygen species in liquid stored and cryopreserved turkey (Meleagris gallopavo) spermatozoa[J].Poultry science,2018,97(10):3709-3717.
[6] PAGANO N,LONGOBARDI V,DE CANDITIIS C,et al.Effect of caspase inhibitor Z-VAD-FMK on bovine sperm cryotolerance[J].Reproduction in domestic animals,2020,55(4):530-536.
[7] MORDENTE A,MEUCCI E,SILVESTRINI A,et al.Anthracyclines and mitochondria[J].Advances in experimental medicine and biology,2012,942:385-419.
[8] TREULEN F,ARIAS M E,AGUILA L,et al.Cryopreservation induces mitochondrial permeability transition in a bovine sperm model[J].Cryobiology,2018,83:65-74.
[9] AITKEN R J,JONES K T,ROBERTSON S A.Reactive oxygen species and sperm function-In sickness and in health[J].Journal of andrology,2012,33(6):1096-1106.
[10] TAYLOR S L,WENG S L,F(xiàn)OX P,et al.Somatic cell apoptosis markers and pathways in human ejaculated sperm:Potential utility as indicators of sperm quality[J].Molecular human reproduction,2004,10(11):825-834.
[11] ANZAR M,HE L W,BUHR M M,et al.Sperm apoptosis in fresh and cryopreserved bull semen detected by flow cytometry and its relationship with fertility[J].Biology of reproduction,2002,66(2):354-360.
[12] JIANG J F,SERINKAN B F,TYURINA Y Y,et al.Peroxidation and externalization of phosphatidylserine associated with release of cytochrome c from mitochondria[J].Free radical biology and medicine,2003,35(7):814-825.
[13] REZAEI N,MOHAMMADI M,MOHAMMADI H,et al.Acrosome and chromatin integrity,oxidative stress,and expression of apoptosis-related genes in cryopreserved mouse epididymal spermatozoa treated with L-Carnitine[J].Cryobiology,2020,95:171-176.
[14] MOHAN R,ATREJA S K.Tyrosine phosphorylation of cytochrome c as a signaling event in frozen thawed buffalo spermatozoa at the cross-roads of capacitation and apoptosis[J].Cryobiology,2015,70(3):253-261.
[15] HO P K,HAWKINS C J.Mammalian initiator apoptotic caspases[J].The FEBS journal,2005,272(21):5436-5453.
[16] TSUJIMOTO Y.Role of Bcl-2 family proteins in apoptosis:Apoptosomes or mitochondria?[J].Genes to cells,1998,3(11):697-707.
[17] 徐亞茹,楊萬喜.中華絨螯蟹精子發(fā)生過程中Caspase家族蛋白(Caspase 3/Caspase 7/Caspase 8)參與生精細(xì)胞凋亡機(jī)制的研究[C]//浙江省第四屆動(dòng)物學(xué)博士與教授論壇、動(dòng)物學(xué)與經(jīng)濟(jì)強(qiáng)省——浙江省動(dòng)物學(xué)研究及發(fā)展戰(zhàn)略研討會(huì)論文
摘要集.杭州:浙江省科學(xué)技術(shù)協(xié)會(huì),2017.
[18] WNDRICH K,PAASCH U,LEICHT M,et al.Activation of caspases in human spermatozoa during cryopreservation:An immunoblot study[J].Cell and tissue banking,2006,7(2):81-90.
[19] LIU Q,SI T L,XU X Y,et al.Electromagnetic radiation at 900 MHz induces sperm apoptosis through bcl-2,bax and caspase-3 signaling pathways in rats[J].Reproductive health,2015,12(1):1-9.
[20] CASELLES A B,MIRO-MORAN A,MORILLO RODRIGUEZ A,et al.Identification of apoptotic bodies in equine semen[J].Reproduction in domestic animals,2014,49(2):254-262.
[21] MARTIN G,CAGNON N,SABIDO O,et al.Kinetics of occurrence of some features of apoptosis during the cryopreservation process of bovine spermatozoa[J].Human reproduction,2007,22(2):380-388.
[22] BHAT G K,SEA T L,OLATINWO M O,et al.Influence of a leptin deficiency on testicular morphology,germ cell apoptosis,and expression levels of apoptosis-related genes in the mouse[J].Journal of andrology,2006,27(2):302-310.
[23] JACOTOT E,DENIAUD A,BORGNE-SANCHEZ A,et al.Therapeutic peptides:Targeting the mitochondrion to modulate apoptosis[J].Biochimica et biophysica acta,2006,1757(9/10):1312-1323.
[24] PAASCH U,SHARMA R K,GUPTA A K,et al.Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa[J].Biology of reproduction,2004,71(6):1828-1837.
[25] WENG S L,TAYLOR S L,MORSHEDI M,et al.Caspase activity and apoptotic markers in ejaculated human sperm[J].Molecular human reproduction,2002,8(11):984-991.
[26] WEI M C,ZONG W X,CHENG E H,et al.Proapoptotic BAX and BAK:A requisite gateway to mitochondrial dysfunction and death[J].Science,2001,292(5517):727-730.
[27] DUAN P,HU C H,BUTLER H J,et al.4-Nonylphenol induces disruption of spermatogenesis associated with oxidative stress-related apoptosis by targeting p53-Bcl-2/Bax-Fas/FasL signaling[J].Environmental toxicology,2017,32(3):739-753.
[28] PAN Y Y,CUI Y,BALOCH A R,et al.Insulinlike growth factor I improves yak (Bos grunniens) spermatozoa motility and the oocyte cleavage rate by modulating the expression of Bax and Bcl-2[J].Theriogenology,2015,84(5):756-762.
[29] ZENG C J,TANG K Y,HE L,et al.Effects of glycerol on apoptotic signaling pathways during boar spermatozoa cryopreservation[J].Cryobiology,2014,68(3):395-404.
[30] 丁麗.甘油對(duì)豬冷凍精子細(xì)胞調(diào)亡信號(hào)通路相關(guān)基因表達(dá)的影響[D].雅安:四川農(nóng)業(yè)大學(xué),2014.
[31] 丁麗,方東輝,何蓮,等.細(xì)胞凋亡相關(guān)Caspases在豬精子冷凍過程中的表達(dá)譜研究[J].四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,32(1):68-75.
[32] RAKHA B A,ANSARI M S,AKHTER S,et al.Use of dimethylsulfoxide for semen cryopreservation in Indian red jungle fowl (Gallus gallus murghi)[J].Theriogenology,2018,122:61-67.
[33] 席利萌,羅軍,楊地坤,等.滲透性冷凍保護(hù)劑對(duì)山羊精子的冷凍保護(hù)效果[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,43(8):27-32.
[34] MANGOLI E,TALEBI A R,ANVARI M,et al.Vitamin C attenuates negative effects of vitrification on sperm parameters,chromatin quality,apoptosis and acrosome reaction in neat and prepared normozoospermic samples[J].Taiwanese journal of obstetrics and gynecology,2018,57(2):200-204.
[35] MASOUDI R,SHARAFI M,ZARE SHAHNEH A,et al.Supplementation of extender with coenzyme Q10 improves the function and fertility potential of rooster spermatozoa after cryopreservation[J].Animal reproduction science,2018,198:193-201.
[36] MOGHADAM M T,F(xiàn)ARD Y A,SAKI G,et al.Effect of vitamin D on apoptotic marker,reactive oxygen species and human sperm parameters during the process of cryopreservation[J].Iranian journal of basic medical sciences,2019,22(9):1036-1043.
[37] SHABANI NASHTAEI M,AMIDI F,SEDIGHI GILANI M A,et al.Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5’ AMP-activated protein kinase activation[J].Andrology,2017,5(2):313-326.
[38] 王昕.白藜蘆醇對(duì)豬冷凍精子細(xì)胞凋亡及凋亡途徑的影響[D].上海:上海海洋大學(xué),2015.
[39] VAFA T S,EMADI M,SADOUGHI S D,et al.Effect of curcumin on Bax,Bcl-2,antioxidant enzymes and lipid peroxidation of sperm after freezing procedure[J].Journal of Ardabil University of medical sciences,2018,18(1):120-130.
[40] TRZCIN′SKA M,BRYA M.Apoptotic-like changes of boar spermatozoa in freezing media supplemented with different antioxidants[J].Polish journal of veterinary sciences,2015,18(3):473-480.
[41] SHAH N,SINGH V,YADAV H P,et al.Effect of reduced glutathione supplementation in semen extender on tyrosine phosphorylation and apoptosis like changes in frozen thawed Hariana bull spermatozoa[J].Animal reproduction science,2017,182:111-122.
[42] 李丹丹,劉蛟,王英群,等.PTD-FNK蛋白對(duì)豬精子的冷凍保護(hù)作用及其機(jī)制[J].江蘇農(nóng)業(yè)科學(xué),2019,47(11):217-221.
[43] MOHAMMADI F,VARANLOO N,HEYDARI NASRABADI M,et al.Supplementation of sperm freezing medium with myoinositol improve human sperm parameters and protects it against DNA fragmentation and apoptosis[J].Cell and tissue banking,2019,20(1):77-86.
[44] ELKHAWAGAH A R,NERVO T,POLETTO M,et al.Effect of relaxin on semen quality variables of cryopreserved stallion semen[J/OL].Animal reproduction science,2020,216[2020-09-27].https://doi.org/10.1016/j.anireprosci.2020.106351.
[45] DASHTESTANI F,GHOURCHIAN H,NAJAFI A.Albumin coated copper-cysteine nanozyme for reducing oxidative stress induced during sperm cryopreservation[J].Bioorganic chemistry,2018,80:621-630.
[46] KHALIL W A,EL-HARAIRY M A,ZEIDAN A E B,et al.Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation[J].Theriogenology,2019,126:121-127.
[47] KIM E J,TALHA N A H,JEON Y B,et al.Effect of k-carrageenan on sperm quality in cryopreservation of canine semen[J].Journal of animal reproduciton and biotechnology,2019,34(1):57-63.