張馨元 劉宇 王文玲 李榮寬


摘要:非酒精性脂肪性肝病(NAFLD)是臨床最常見肝病之一,其發病率在全球范圍內持續增加。NAFLD包括非酒精性肝脂肪變,并可以進一步進展為非酒精性脂肪性肝炎、肝硬化和肝細胞癌。迄今為止,肝活檢被認為是評估肝脂肪變性和纖維化的“金標準”。但鑒于活檢在大范圍篩查中存在著局限性,用于評估NAFLD各個階段的非侵入性測試對患者診斷及預后管理的作用顯得愈發重要。本文總結了NAFLD診斷與評估的最新進展。關鍵詞:非酒精性脂肪性肝病; 診斷; 治療學
Diagnosis and evaluation of nonalcoholic fatty liver disease
ZHANG Xinyuan, LIU Yu, WANG Wenling, LI Rongkuan. (Department of Infectious Diseases, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, China)
Corresponding author:LI Rongkuan, dalianlrk@126.com (ORCID:0000-0002-2927-7017)
Abstract:Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of liver disease, and its incidence rate continues to increase globally. NAFLD includes nonalcoholic steatosis and can further progress to nonalcoholic steatohepatitis, liver cirrhosis, and hepatocellular carcinoma. So far, liver biopsy has been regarded as the “gold standard” for evaluating hepatic steatosis and fibrosis; however, due to the limitations of biopsy in large-scale screening, noninvasive tests used to evaluate various stages of NAFLD have become increasingly important in the diagnosis and prognosis management of patients. This article summarizes the latest advances in diagnosis and evaluation of NAFLD.
Key words:Non-alcoholic Fatty Liver Disease; Diagnosis; Therapeutics
非酒精性脂肪性肝病(NAFLD)影響全球約25%的人口,近年來已超過病毒性肝炎,成為慢性肝病的主要病因[1]。隨著肥胖和代謝綜合征(metabolic syndrome,MetS)的流行,NAFLD 已成為我國健康體檢肝生物化學指標異常的首要原因[2]。NAFLD包括一系列病理學特征:從在肝細胞質中異位積聚甘油三酯(即肝脂肪變性),形成炎癥和肝細胞損傷[即非酒精性脂肪性肝炎(NASH)],到進行性纖維化并發展為肝硬化、終末期肝病或HCC。NAFLD的發生與2型糖尿病(type 2 diabetes mellitus,T2DM)密切相關,也與動脈硬化性心血管疾病和慢性腎臟疾病相關聯。肝脂肪變性是診斷NAFLD的先決條件,而肝活檢是診斷肝脂肪變性的“金標準”。此外,肝組織病理還能夠評估NASH的存在與否,伴或不伴有進展期肝纖維化。然而,肝活檢取樣僅占器官體積的約1/50 000,并且有其固有的局限性,如成本、因樣本采集不足導致的取樣錯誤、樣本的錯誤處置、觀察者的差異和不良事件風險,使其不適合進行大規模的篩查[3]。因此,在NAFLD患者的管理中,簡單、易獲取且經過驗證的非侵入性測試是非常必要的。肝纖維化是NAFLD患者死亡的獨立預測因子[4],因此準確的纖維化分期以及診斷早期纖維化的能力對于NAFLD的早期診斷至關重要。本文對NAFLD的診斷及評估等多個方面研究進展進行全面綜述。
1對“非酒精性”的理解
NAFLD的診斷需要排除飲酒及肝脂肪變性或脂肪性肝炎的所有其他病因。首先,為了區別NAFLD和AFLD,患者要無過量飲酒史,即男性飲酒折合乙醇量<30 g/d,女性< 20 g/d[5]。其次要排除所有已知的可導致脂肪肝的慢性肝病,如病毒性肝炎(尤其是基因3型丙型肝炎)、肝豆狀核變性、血色素沉著癥、自身免疫性肝炎。最后需要排除所有導致肝脂肪變性的繼發原因,如藥物因素(包括他莫昔芬、胺碘酮、糖皮質激素、合成雌激素、甲氨蝶呤、抗病毒藥物等)、代謝或遺傳因素(包括β脂蛋白缺乏血癥、溶酶體酸性脂肪酶缺乏癥、脂肪代謝障礙、Weber-Christian綜合征等)、營養因素(營養不良、吸收不良、全胃腸外營養、快速減重、空腸回腸旁路術后等)及其他特殊情況(如小腸憩室、石化產品暴露、有機溶劑暴露等)[6]。
然而,“非酒精性”的真實意義在于NAFLD與MetS和胰島素抵抗密切相關。因此,所有具有一種或多種MetS(包括腹圍增加、T2DM、高甘油三酯血癥、低高密度脂蛋白血癥及高血壓)的個體都應警惕NAFLD。但這個規律并不適用于由于PAPLA3基因突變導致的NAFLD[7]。“NAFLD”過度強調酒精濫用,忽視了代謝功能障礙在該疾病中的重要性。2020年,Eslam等[8]提出了對脂肪肝新的、全面重新定義,建議將NAFLD重新命名為代謝相關性脂肪性肝病(metabolic associated fatty liver disease, MAFLD)。這個命名強調了肥胖、胰島素抵抗、血脂異常、T2DM和全身炎癥在脂肪肝發生和發展中的重要作用。NAFLD和MAFLD都要求存在肝脂肪變性,但NAFLD的診斷是要排除酒精性和其他肝臟疾病,而MAFLD是一種相對積極的診斷,基于超重/肥胖或存在T2DM,或存在兩種及以上代謝風險因素。
2肝脂肪變的診斷與評估
NAFLD無論病因如何,都是由于肝脂肪沉積,也稱為脂肪變性。因此檢測肝脂肪變性是否存在是診斷NAFLD的第一步。病理學上用于量化肝脂肪含量的傳統組織病理學方法是一種視覺半定量方法,常用的分級方法是四級量表法(0~3)。0~3級分別對應<5%、5%~33%、34%~66%和>66%的肝細胞中的脂肪沉積[9]。但由于肝活檢的局限性,非侵入性測試(non-invasive test,NIT)在臨床上的意義愈發重要。
目前,最常見的基于血清的脂肪變性生物標志物是ALT和GGT。長期以來,ALT一直被用作肝脂肪變性的標志物,但其敏感度和特異度均較低[10]。NAFLD患者的GGT通常升高,有研究[11]結果表明,其與纖維化晚期和死亡率的增加有關,然而僅憑借GGT水平無法確定肝脂肪變性的程度。由于單一因素對肝脂肪變性的評估準確性較差,目前出現了較多的基于血清的生物標志物組合,包括脂肪肝指數(FLI)[12]、肝脂肪變性指數(HSI)[13]、NAFLD肝脂肪評分(NAFLD-LFS)[14]、SteatoTest[15]、脂質積聚產物評分(LAP)[16]、K-NAFLD評分[17]、NAFL篩查評分(NSS)[18]和NASH指數(ION)[19](具體計算公式及診斷性能見表1)。這些模型可以在識別肝脂肪變性或心血管及代謝危險因素方面發揮作用,但目前上述指標均不能用于NAFLD的臨床診斷或NAFLD患者預后管理,哪種算法可以被推薦作為NAFLD篩查的初始工具尚需進一步研究[20]。
由于基于血清生物標志物的局限性,肝脂肪變性的診斷還應結合影像學方法。超聲檢查因其易操作性及價格低廉被廣泛用于肝脂肪變性的首選檢查。超聲通過評估肝腎對比度、肝實質回聲強度、聲束衰減、血管壁回聲強度和膽囊壁清晰度等來診斷肝脂肪變性[21]。歐洲肝病學會[21]提出超聲被推薦用于篩查T2DM患者的肝脂肪變性。然而,超聲的局限性在于對輕度(<20%)肝脂肪變性的敏感性有限,且對肝脂肪變的評估受嚴重纖維化的影響[22]。受控衰減參數(controlled attenuation parameters,CAP)是一種通過超聲瞬時彈性成像平臺定量檢測肝臟脂肪變性的新方法,為肝脂肪的常規篩查提供了便利。有研究[23]結果表明,CAP技術對NAFLD及酒精性肝病患者均具有診斷價值,能夠檢出5%以上的肝脂肪變,準確區分輕度肝脂肪變與中-重度肝脂肪變。一項包含2 375例NAFLD患者的薈萃分析[24]將CAP與肝組織學的脂肪變性結果進行了比較研究,結果顯示,脂肪變性>11%時AUROC為0.82,CAP臨界值為248 dB/m;脂肪變性>33%時AUROC為0.86, CAP臨界值為268 dB/m;脂肪變性>66%時AUROC為0.89,CAP臨界值為280 dB/m 。但CAP的缺點是檢測失敗率高(0~24%),尤其是在肥胖患者中。為了克服這一缺點,FibroScan對于肥胖患者不再使用傳統的M探頭,而改用專門設計的XL探頭[25]。
基于MR的技術已被廣泛驗證可以作為肝脂肪變性的定量工具。其中MRI的生物標志物質子密度脂肪分數(proton density fat fraction,PDFF)被公認為是肝脂肪變性的非侵入性參考標準,并有可能取代肝活檢。該生物標志物能夠測量脂肪的可移動質子的相對比例,并與肝臟甘油三酯濃度密切相關。PDFF在脂肪變性的診斷、分級和縱向監測方面顯示出很高的準確性[26]。目前有兩種主要的基于MR的肝脂肪定量技術:質子磁共振波譜(H-MRS)和多回波Dixon MRI。有研究[27]表明,與組織學結果相對照,MRS對于肝脂肪變性的診斷具有較高的準確性(檢測≥1級脂肪變性時AUROC為0.97~0.99)。然而,MRS也具有局限性,僅對肝臟的小部分進行脂肪定量導致了采樣的不確定性,且由于復雜及高難度的操作和需要后續進行結果分析限制了其廣泛使用。多回波Dixon技術則可以精確地區分來自水和脂肪的信號,并可通過計算PDFF來獲得整個肝臟的脂肪信號分布圖[28]。然而,關于纖維化對PDFF測定肝脂肪變性的準確性有無影響仍存在爭議,尚需進一步研究。
3脂肪性肝炎的診斷與評估
與非酒精性單純性脂肪肝相比,NASH患者中肝纖維化、肝硬化、肝癌的發生率明顯增高。因此,對NASH的早期診斷并進行干預至關重要。但是,現有的影像學技術和實驗室檢查等無創方法均不能準確診斷NASH。因此,目前肝活檢仍然是診斷NASH的“金標準”,其病理表現包括脂肪變性聚集、肝細胞氣球樣變和小葉炎癥,病變主要位于肝小葉第三區[29]。目前的半定量分級及分期系統主要包括美國NASH臨床研究協作網公布的NAS積分和歐洲脂肪肝協作組提出的SAF積分。NAS積分是目前大多數有關NASH研究所依據的標準,分為0~8分,在脂肪變性、氣球樣變和小葉炎癥三類中得到1分或更高即可診斷為NASH[30]。而SAF積分是一種涵蓋了脂肪變性、活性、纖維化的評分系統,可以使用脂肪肝抑制進展算法對肥胖導致的肝損傷進行分類。有研究[31]表明,該評分法相比NAS積分更能提高病理診斷的一致性。雖然肝活檢有其固有的局限性,而且病理學家對NASH病理的特征及定義仍有一定的爭議,但其對于病情的判斷以及療效評估的作用是無法替代的。2018年由中華醫學會肝病學分會脂肪肝和酒精性肝病學組制定的《非酒精性脂肪性肝病防治指南》[2]中對于肝活檢的推薦意見如下:合并MetS、T2DM、血清氨基酸轉移酶和/或CK-18持續增高的NAFLD患者是NASH的高危人群,建議通過肝活組織檢查明確診斷。
早期發現NASH有利于預防NASH相關纖維化,因此除了行肝活檢,目前也在積極探索、嘗試應用NIT來對NASH行早期篩查。細胞角蛋白-18(CK18)是一種中間絲蛋白,是被研究較多的、診斷NASH的生物標志物之一。CK18在細胞調亡時被切割為CK18 M30和CK18 M65兩個片段。有研究[32]通過檢測CK18在評估不同纖維化階段NASH的準確性差異驗證CK18可能預測NASH患者疾病的嚴重程度。一些炎癥標志物,如CXCL10、TNF-α和IL-8在區分NASH與單純性脂肪變性和非NASH方面表現出中等的診斷效能[33-34]。肝臟分泌的成纖維細胞生長因子21(FGF21)是NASH的另一個潛在生物標志物。一項研究[32]結果顯示,FGF21的AUROC為0.62,126 pg/mL和578 pg/mL的兩個臨界值對排除及診斷NASH的敏感度和特異度均大于90%,且FGF21與CK18聯合使用能夠進一步提高其陽性及陰性預測值。脂肪細胞因子可能是診斷NASH的潛在標志物,包括脂聯素、瘦素和抵抗素等[35]。
目前的研究[36]結果表明,應用常規影像技術(超聲、CT或MRI)對NASH和單純性脂肪變性進行鑒別是非常困難的。磁共振彈性成像(magnetic resonance elastography,MRE)是一種非侵入性定量檢測軟組織彈性及結構的影像檢查手段。該研究[36]結果顯示,MRE診斷NASH的臨界值為2.74 kPa,AUROC為0.93。有研究[37]發現,通過MRI信號衰減值測量的肝臟鐵積聚與NAFLD疾病的嚴重程度以及纖維化進展顯著相關,基于MRI的肝臟鐵積聚評估NASH的AUROC為0.91,敏感度為83%,特異度為80%。
近年來,作為NAFLD新興的、非侵入性生物標志物,非編碼RNA得到越來越多的關注。非編碼RNA的異常表達與NAFLD相關。其中miRNA在NAFLD中的作用相關研究較多。miR-122、miR-34、miR-192和miR-375在NAFLD中表達上調,并與疾病嚴重程度呈正相關[38]。最顯著的變化出現在miR-122上,miR-122是最豐富的肝臟特異性miRNA(占肝臟miRNA總量的70%以上),被認為是NAFLD(尤其是NASH)的潛在生物標志物。有研究[38]表明,miR-122在NAFLD患者血清中顯著升高,肝臟miR-122水平與組織學的嚴重程度呈正相關 。
4脂肪性肝纖維化、肝硬化的診斷與評估
檢測NAFLD患者的肝纖維化及肝硬化具有重要的臨床意義。晚期肝纖維化(F3~F4)可獨立預測肝臟相關并發癥的發生、肝移植的需求以及肝臟相關病死率[4]。晚期肝纖維化還與慢性腎臟病的高發病率和血管相關疾病病死率增加相關。肝活檢仍然是檢測肝纖維化及肝硬化最準確的手段。1991年Knodell等提出了最初的半定量評分系統,該系統將分級和分期的結果綜合描述在病理報告中。隨后的評分系統將分級和分期分別進行計分,包括朔伊爾評分系統、Batts-Ludwig評分系統、METAVIR評分系統以及Ishak評分系統等[39]。目前臨床上最常用的是METAVIR評分系統,其將肝纖維化分為0~4期,即F0~F4:F0為無纖維化;F1為肝門束擴大,但未形成間隔;F2為肝門束擴大,少量間隔形成;F3為廣泛形成間隔,無肝硬化;F4為肝硬化期[40]。
用于評估纖維化階段的NIT在NAFLD患者的管理中發揮越來越重要的作用。表2列出了目前常見的非侵入性血清生物標志物模型。FIB-4和NAFLD纖維化評分(NAFLD fibrosis score, NFS)是使用最廣泛的算法[41-42],這兩種算法都具有較高的陰性預測值。APRI評分被推薦作為晚期肝纖維化的另一個標志物,其在評估NAFLD患者肝纖維化分期方面的準確性已在許多研究中得到證實[44]。一些生物標志物面板,如增強型肝纖維化(enhanced liver fibrosis,ELF)測試[44]、FiberTest(FiberSure)[45]和FiberMeter[46]也被應用于臨床。ELF包括3個直接的纖維化標志物,除了區分晚期纖維化患者外,還可以很好地預測肝臟相關的發病率和死亡率。因此,在FIB-4和NFS提示晚期纖維化的患者中,可考慮進行該試驗[44]。
近年來,影像學技術的進展顯著提高了肝纖維化的無創評估能力。基于FibroScan的振動控制瞬時彈性成像(vibration-controlled transient elastography,VCTE)使用脈沖回波超聲測量通過肝實質剪切波的速度,以獲得作為肝纖維化標志的肝硬度測量。VCTE的結果至少需要10次測量,測量的肝組織區域約為1 cm(直徑)×4 cm(長度),約為肝活檢的100倍[47]。肝硬度測量值<8 kPa可以大概率排除晚期纖維化[48],有助于確定哪些患者需要行肝活檢。但是至今仍無公認的閾值用于確診肝硬化[49]。聲脈沖輻射力成像技術(acoustic radiation force impulse,ARFI)是基于超聲的彈性成像方法,能夠定量評估組織硬度。與VCTE類似,有研究[50]表明,ARFI對晚期肝纖維化具有良好的診斷效能,平均AUROC為0.84~0.87,對肝硬化診斷的平均AUROC為0.91~0.94。此外,與VCTE不同,ARFI的診斷效能通常不受肥胖或血管或膽道等干擾結構的限制。然而,ARFI的缺點是取樣體積大小<VCTE,并且對質量標準的評估較少。二維剪切波超聲彈性成像技術是近些年問世的超聲彈性成像新技術,其原理是聲輻射力作用于多個點位移組織,用于實時檢測剪切波在圖像多個點的傳播。有研究[51]表明,二維剪切波超聲彈性成像技術對于NAFLD肝纖維化晚期的診斷效能與VCTE相近。
MRE可以使用現有的MRI描儀進行。MRE通常在肝臟最寬的位置放置厚度為5~10 mm的4個軸向或橫向的切片,通常相當于肝總體積的5%~35%。通過在生成的彈性圖上繪制感興趣區域,避免邊緣效應、大血管、膽囊窩以及受心臟和血管偽影影響的任何區域,從而獲得肝臟硬度。有研究[52]結果表明,MRE在診斷NAFLD患者的肝纖維化、預測晚期肝纖維化和肝硬化方面具有較高的準確性,AUROC值>0.90。然而,與VCTE不同,因其需要MRI設備,成本高且耗時,因而無法做到大規模檢測。
最近一項研究[53]發現,血清miR-193a-5p的水平與NAFLD活性評分和纖維化程度密切相關,提示miR-193a-5p是進展性NAFLD潛在的臨床生物標志物。另有一項研究[54]使用基于腸道微生物群方法與VCTE、NFS和FIB-4聯合預測83例經肝活檢證實的NAFLD患者的晚期肝纖維化。該項由臨床特征和腸道菌群組合的隨機森林模型對晚期肝纖維化診斷的AUROC為0.87,與NFS和FIB-4相似,但低于VCTE。
5危險因素評估
NAFLD的危險因素包括肥胖、MetS、高血壓、血脂異常、T2DM和慢性腎臟疾病等。疑似NAFLD的患者需要全面評估人體指標和血清糖脂代謝指標及其變化。肥胖被認為是NAFLD的主要危險因素。然而,一定比例的NAFLD患者BMI正常,即存在瘦型或非肥胖型NAFLD,全球患病率在5%~26%,由于缺乏明顯的危險因素,使診斷難度大大增加[55]。一般而言,與健康個體相比,瘦型NAFLD患者的代謝已經發生了異常改變,甘油三酯和胰島素抵抗(IR)水平較高,但與肥胖型NAFLD患者相比,MetS的患病率較低[1]。即使瘦型NAFLD個體可能僅出現中度代謝的異常改變,其也有發展為NASH和晚期纖維化的風險。人體成分測定有助于發現常見于“瘦人”的隱性肥胖(體脂含量和/或體脂占體質量百分比增加)和肌少癥[2]。MetS有多種定義,但公認的表現是腰圍增加、高血糖、血脂異常和系統性高血壓。NAFLD和MetS表現之間的關聯通常是雙向的,尤其在糖尿病和高血壓方面,MetS會增加NAFLD的風險,而NAFLD或NASH治療也會改善MetS的一些表現。
T2DM與NAFLD的進展密切相關,事實上,超過50%的T2DM患者患有NAFLD[56]。糖尿病不僅是NAFLD的常見合并癥,也是NAFLD向NASH發展的決定因素之一,進一步可發展為肝硬化及HCC。與MetS一樣,T2DM患者易患NAFLD,反之亦然。另一方面,IR被認為是導致NAFLD和T2DM發展的關鍵發病機制之一,隨著疾病進展而惡化。在肝臟中,IR的特征是糖異生增加和肝糖原合成減少[57]。因此,NAFLD患者也有更高的糖尿病發病風險。HOMA-IR是用于評價群體IR水平的指標,計算方法如下:空腹血糖水平(FPG,mmol/L)×空腹血胰島素水平(FINS,mIU/L)/22.5,正常成人HOMA-IR指數大約為1[2]。
近年來,基于遺傳學、代謝組學及腸道微生物組對NAFLD進展的研究越來越多。其中對NAFLD的發展和進展影響最顯著的風險變體是PNPLA3,有研究[7]表明,其與NAFLD纖維化進展、HCC發展、ESLD和全因死亡率相關。TM6SF2也與NAFLD的進展相關。在NAFLD患者中,TM6SF2 E167K變體與顯著纖維化(F2~F4)密切相關[58]。有研究[59]結果表明,腸道微生物群能夠影響肝臟的碳水化合物和脂質代謝,也影響促炎和抗炎之間的平衡,能夠直接影響NAFLD及其進展為NASH。
6展望
NAFLD是一個日益嚴重的全球健康問題。NAFLD的早期診斷及對危險因素準確評估對阻止NAFLD進展到晚期肝纖維化、肝硬化及HCC至關重要。目前NAFLD診斷的金標準仍為肝臟病理,但因其固有的局限性難以廣泛推廣,越來越多的NIT被用于NAFLD各階段的診斷。除了傳統的血清學生物標志物及各種影像學方法,出現了諸多基于遺傳學、表觀遺傳學、代謝及腸道微生物的新興生物標志物,但是相對于組織學其準確度依舊欠佳。NAFLD是一種復雜的疾病,涉及多個器官和多種機制。相信隨著對NAFLD發病機制的進一步研究,將會有更多新的無創、精確、簡便的診斷方法問世,使NAFLD的診斷及評估更為精準。
利益沖突聲明:本文不存在任何利益沖突。作者貢獻聲明:張馨元負責查找文獻,撰寫文稿;劉宇、王文玲負責審閱文稿;李榮寬負責審閱文稿及最后定稿。
參考文獻:
[1]YOUNOSSI Z, ANSTEE QM, MARIETTI M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. DOI: 10.1038/nrgastro.2017.109.
[2]National Workshop on Fatty Liver and Alcoholic Liver Disease,Chinese Society of Hepatology,Chinese Medical Association, Fatty Liver Expert Committee,Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.中華醫學會肝病學分會脂肪肝和酒精性肝病學組, 中國醫師協會脂肪性肝病專家委員會. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 臨床肝膽病雜志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
[3]SUMIDA Y, NAKAJIMA A, ITOH Y. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis[J]. World J Gastroenterol, 2014, 20(2): 475-485. DOI: 10.3748/wjg.v20.i2.475.
[4]TAYLOR RS, TAYLOR RJ, BAYLISS S, et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis[J]. Gastroenterology, 2020, 158(6): 1611-1625. e12. DOI: 10.1053/j.gastro.2020.01.043.
[5]RATZIU V, BELLENTANI S, CORTEZ-PINTO H, et al. A position statement on NAFLD/NASH based on the EASL 2009 special conference[J]. J Hepatol, 2010, 53(2): 372-384. DOI: 10.1016/j.jhep.2010.04.008.
[6]POWELL EE, WONG VW, RINELLA M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397(10290): 2212-2224. DOI: 10.1016/S0140-6736(20)32511-3.
[7]ROMEO S, KOZLITINA J, XING C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease[J]. Nat Genet, 2008, 40(12): 1461-1465. DOI: 10.1038/ng.257.
[8]ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014. e1. DOI: 10.1053/j.gastro.2019.11.312.
[9]KLEINER DE, BRUNT EM, VAN NATTA M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease[J]. Hepatology, 2005, 41(6): 1313-1321. DOI: 10.1002/hep.20701.
[10]PRATI D, COLLI A, CONTE D, et al. Spectrum of NAFLD and diagnostic implications of the proposed new normal range for serum ALT in obese women[J]. Hepatology, 2005, 42(6): 1460-1461; author reply 1461. DOI: 10.1002/hep.20964.
[11]TAHAN V, CANBAKAN B, BALCI H, et al. Serum gamma-glutamyltranspeptidase distinguishes non-alcoholic fatty liver disease at high risk[J]. Hepatogastroenterology, 2008, 55(85): 1433-1438.
[12]BEDOGNI G, BELLENTANI S, MIGLIOLI L, et al. The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population[J]. BMC Gastroenterol, 2006, 6: 33. DOI: 10.1186/1471-230X-6-33.
[13]LEE JH, KIM D, KIM HJ, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease[J]. Dig Liver Dis, 2010, 42(7): 503-508. DOI: 10.1016/j.dld.2009.08.002.
[14]KOTRONEN A, PELTONEN M, HAKKARAINEN A, et al. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors[J]. Gastroenterology, 2009, 137(3): 865-872. DOI: 10.1053/j.gastro.2009.06.005.
[15]POYNARD T, RATZIU V, NAVEAU S, et al. The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis[J]. Comp Hepatol, 2005, 4: 10. DOI: 10.1186/1476-5926-4-10.
[16]BEDOGNI G, KAHN HS, BELLENTANI S, et al. A simple index of lipid overaccumulation is a good marker of liver steatosis[J]. BMC Gastroenterol, 2010, 10: 98. DOI: 10.1186/1471-230X-10-98.
[17]JEONG S, KIM K, CHANG J, et al. Development of a simple nonalcoholic fatty liver disease scoring system indicative of metabolic risks and insulin resistance[J]. Ann Transl Med, 2020, 8(21): 1414. DOI: 10.21037/atm-20-2951.
[18]ZHOU YJ, ZHOU YF, ZHENG JN, et al. NAFL screening score: A basic score identifying ultrasound-diagnosed non-alcoholic fatty liver[J]. Clin Chim Acta, 2017, 475: 44-50. DOI: 10.1016/j.cca.2017.09.020.
[19]OTGONSUREN M, ESTEP MJ, HOSSAIN N, et al. Single non-invasive model to diagnose non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)[J]. J Gastroenterol Hepatol, 2014, 29(12): 2006-2013. DOI: 10.1111/jgh.12665.
[20]AHN SB. Noninvasive serum biomarkers for liver steatosis in nonalcoholic fatty liver disease: Current and future developments[J]. Clin Mol Hepatol, 2023, 29(Suppl): S150-S156. DOI: 10.3350/cmh.2022.0362.
[21]European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical practice guidelines for the management of non-alcoholic fatty liver disease[J]. Diabetologia, 2016, 59(6): 1121-1140. DOI: 10.1007/s00125-016-3902-y.
[22]FERRAIOLI G, MAIOCCHI L, RACITI MV, et al. Detection of liver steatosis with a novel ultrasound-based technique: a pilot study using MRI-Derived proton density fat fraction as the gold standard[J]. Clin Transl Gastroenterol, 2019, 10(10): e00081. DOI: 10.14309/ctg.0000000000000081.
[23]AHN JM, PAIK YH, MIN SY, et al. Relationship between controlled attenuation parameter and hepatic steatosis as assessed by ultrasound in alcoholic or nonalcoholic fatty liver disease[J]. Gut Liver, 2016, 10(2): 295-302. DOI: 10.5009/gnl15155.
[24]KARLAS T, PETROFF D, SASSO M, et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis[J]. J Hepatol, 2017, 66(5): 1022-1030. DOI: 10.1016/j.jhep.2016.12.022.
[25]CHAN WK, NIK MUSTAPHA NR, WONG GL, et al. Controlled attenuation parameter using the FibroScan XL probe for quantification of hepatic steatosis for non-alcoholic fatty liver disease in an Asian population[J]. United European Gastroenterol J, 2017, 5(1): 76-85. DOI: 10.1177/2050640616646528.
[26]CAUSSY C, ALQUIRAISH MH, NGUYEN P, et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis[J]. Hepatology, 2018, 67(4): 1348-1359. DOI: 10.1002/hep.29639.
[27]RUNGE JH, SMITS LP, VERHEIJ J, et al. MR spectroscopy-derived proton density fat fraction is superior to controlled attenuation parameter for detecting and grading hepatic steatosis[J]. Radiology, 2018, 286(2): 547-556. DOI: 10.1148/radiol.2017162931.
[28]PARK J, LEE JM, LEE G, et al. Quantitative evaluation of hepatic steatosis using advanced imaging techniques: focusing on new quantitative ultrasound techniques[J]. Korean J Radiol, 2022, 23(1): 13-29. DOI: 10.3348/kjr.2021.0112.
[29]KLEINER DE, BRUNT EM. Nonalcoholic fatty liver disease: pathologic patterns and biopsy evaluation in clinical research[J]. Semin Liver Dis, 2012, 32(1): 3-13. DOI: 10.1055/s-0032-1306421.
[30]SHEKA AC, ADEYI O, THOMPSON J, et al. Nonalcoholic steatohepatitis: a review[J]. JAMA, 2020, 323(12): 1175-1183. DOI: 10.1001/jama.2020.2298.
[31]BEDOSSA P, FLIP Pathology Consortium. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease[J]. Hepatology, 2014, 60(2): 565-575. DOI: 10.1002/hep.27173.
[32]HE L, DENG L, ZHANG Q, et al. Diagnostic value of ck-18, fgf-21, and related biomarker panel in nonalcoholic fatty liver disease: a systematic review and meta-analysis[J]. Biomed Res Int, 2017, 2017: 9729107. DOI: 10.1155/2017/9729107.
[33]ZHANG X, SHEN J, MAN K, et al. CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis[J]. J Hepatol, 2014, 61(6): 1365-1375. DOI: 10.1016/j.jhep.2014.07.006.
[34]QI S, XU D, LI Q, et al. Metabonomics screening of serum identifies pyroglutamate as a diagnostic biomarker for nonalcoholic steatohepatitis[J]. Clin Chim Acta, 2017, 473: 89-95. DOI: 10.1016/j.cca.2017.08.022.
[35]WONG VW, ADAMS LA, de LDINGHEN V, et al. Noninvasive biomarkers in NAFLD and NASH - current progress and future promise[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(8): 461-478. DOI: 10.1038/s41575-018-0014-9.
[36]CHEN J, TALWALKAR JA, YIN M, et al. Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography[J]. Radiology, 2011, 259(3): 749-756. DOI: 10.1148/radiol.11101942.
[37]KIM TH, JEONG CW, JUN HY, et al. Noninvasive differential diagnosis of liver iron contents in nonalcoholic steatohepatitis and simple steatosis using multiecho dixon magnetic resonance imaging[J]. Acad Radiol, 2019, 26(6): 766-774. DOI: 10.1016/j.acra.2018.06.022.
[38]BRAZA-BOLS A, MAR-ALEXANDRE J, MOLINA P, et al. Deregulated hepatic microRNAs underlie the association between non-alcoholic fatty liver disease and coronary artery disease[J]. Liver Int, 2016, 36(8): 1221-1229. DOI: 10.1111/liv.13097.
[39]TIAN AP, YANG YF. A comparative analysis of pathological grading and staging systems for chronic hepatitis[J]. J Clin Hepatol, 2018, 34(11): 2271-2277. DOI: 10.3969/j.issn.1001-5256.2018.11.002.田愛平, 楊永峰. 慢性肝炎病理學分級分期評分系統比較[J]. 臨床肝膽病雜志, 2018, 34(11): 2271-2277. DOI: 10.3969/j.issn.1001-5256.2018.11.002.
[40]BEDOSSA P, POYNARD T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group[J]. Hepatology, 1996, 24(2): 289-293. DOI: 10.1002/hep.510240201.
[41]ANGULO P, HUI JM, MARCHESINI G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD[J]. Hepatology, 2007, 45(4): 846-854. DOI: 10.1002/hep.21496.
[42]SHAH AG, LYDECKER A, MURRAY K, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease[J]. Clin Gastroenterol Hepatol, 2009, 7(10): 1104-1112. DOI: 10.1016/j.cgh.2009.05.033.
[43]KRUGER FC, DANIELS CR, KIDD M, et al. APRI: a simple bedside marker for advanced fibrosis that can avoid liver biopsy in patients with NAFLD/NASH[J]. S Afr Med J, 2011, 101(7): 477-480.
[44]GUHA IN, PARKES J, RODERICK P, et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and exploring simple markers[J]. Hepatology, 2008, 47(2): 455-460. DOI: 10.1002/hep.21984.
[45]RATZIU V, MASSARD J, CHARLOTTE F, et al. Diagnostic value of biochemical markers (FibroTest-FibroSURE) for the prediction of liver fibrosis in patients with non-alcoholic fatty liver disease[J]. BMC Gastroenterol, 2006, 6: 6. DOI: 10.1186/1471-230X-6-6.
[46]CAL?S P, OBERTI F, MICHALAK S, et al. A novel panel of blood markers to assess the degree of liver fibrosis[J]. Hepatology, 2005, 42(6): 1373-1381. DOI: 10.1002/hep.20935.
[47]OZTURK A, GRAJO JR, DHYANI M, et al. Principles of ultrasound elastography[J]. Abdom Radiol (NY), 2018, 43(4): 773-785. DOI: 10.1007/s00261-018-1475-6.
[48]PAPATHEODORIDI M, HIRIART JB, LUPSOR-PLATON M, et al. Refining the Baveno VI elastography criteria for the definition of compensated advanced chronic liver disease[J]. J Hepatol, 2021, 74(5): 1109-1116. DOI: 10.1016/j.jhep.2020.11.050.
[49]PETTA S, WONG VW, CAMM C, et al. Improved noninvasive prediction of liver fibrosis by liver stiffness measurement in patients with nonalcoholic fatty liver disease accounting for controlled attenuation parameter values[J]. Hepatology, 2017, 65(4): 1145-1155. DOI: 10.1002/hep.28843.
[50]NIERHOFF J, CHVEZ ORTIZ AA, HERRMANN E, et al. The efficiency of acoustic radiation force impulse imaging for the staging of liver fibrosis: a meta-analysis[J]. Eur Radiol, 2013, 23(11): 3040-3053. DOI: 10.1007/s00330-013-2927-6.
[51]CASSINOTTO C, BOURSIER J, PAISANT A, et al. Transient versus two-dimensional shear-wave elastography in a multistep strategy to detect advanced fibrosis in NAFLD[J]. Hepatology, 2021, 73(6): 2196-2205. DOI: 10.1002/hep.31655.
[52]LOOMBA R, WOLFSON T, ANG B, et al. Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: a prospective study[J]. Hepatology, 2014, 60(6): 1920-1928. DOI: 10.1002/hep.27362.
[53]JOHNSON K, LEARY PJ, GOVAERE O, et al. Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance[J]. JHEP Rep, 2022, 4(2): 100409. DOI: 10.1016/j.jhepr.2021.100409.
[54]LANG S, FAROWSKI F, MARTIN A, et al. Prediction of advanced fibrosis in non-alcoholic fatty liver disease using gut microbiota-based approaches compared with simple non-invasive tools[J]. Sci Rep, 2020, 10(1): 9385. DOI: 10.1038/s41598-020-66241-0.
[55]WANG AY, DHALIWAL J, MOUZAKI M. Lean non-alcoholic fatty liver disease[J]. Clin Nutr, 2019, 38(3): 975-981. DOI: 10.1016/j.clnu.2018.08.008.
[56]WILLIAMS CD, STENGEL J, ASIKE MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study[J]. Gastroenterology, 2011, 140(1): 124-131. DOI: 10.1053/j.gastro.2010.09.038.
[57]BALLESTRI S, ZONA S, TARGHER G, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis[J]. J Gastroenterol Hepatol, 2016, 31(5): 936-944. DOI: 10.1111/jgh.13264.
[58]LIU YL, REEVES HL, BURT AD, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease[J]. Nat Commun, 2014, 5: 4309. DOI: 10.1038/ncomms5309.
[59]RABOT S, MEMBREZ M, BRUNEAU A, et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism[J]. FASEB J, 2010, 24(12): 4948-4959. DOI: 10.1096/fj.10-164921.
收稿日期:2023-05-04;錄用日期:2023-06-20
本文編輯:林姣
引證本文:ZHANG XY, LIU Y, WANG WL, et al. Diagnosis and evaluation of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2023, 39(8): 1780-1788.
張馨元, 劉宇, 王文玲,? 等. 非酒精性脂肪性肝病的診斷與評估[J]. 臨床肝膽病雜志, 2023, 39(8):? 1780-1788.