999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

2023年全國高考數學I卷第17題13解

2025-03-19 00:00:00束長明
中學數學·高中版 2025年3期
關鍵詞:思維導圖

摘要:本文中以2023年全國高考數學I卷第17題為載體,給出解三角形的五種常規解題路徑.(1)通解,運用解三角形相關知識求解;(2)特征構造法,抓住條件和所求的特征,構造相應的圖形作答;(3)解析幾何法,通過建系,利用解析幾何相關知識作答;(4)向量法,通過建系,借助向量相關知識作答;(5)幾何法,利用初中平面幾何相關知識作答.通過分析,促使學生能夠結合具體題目,運用五種路徑熟練解決一類解三角形問題,真正懂一題會一類,有效提升學科素養.

關鍵詞:解三角形;解題路徑;思維導圖

1 試題呈現

(2023年全國高考數學Ⅰ卷第17題)已知在△ABC中,A+B=3C,2sin(A-C)=sin B.

(1)求sin A;

(2)設AB=5,求AB邊上的高.

分析:第(1)問考查三角形內角和、兩角和差的正弦公式,屬于基礎題.第(2)問考查了三角恒等變換、三角形的面積公式、正弦定理等解三角形相關知識.本問解題途徑較多,可以運用不同的數學知識從不同層面進行探究,創造性地解決問題;對學生的素養能力有一定要求,突出考查學生邏輯推理和數學運算等素養,體現了新高考由知識立意轉向能力立意,有效地實現“低起點、多層次、高落差”的考查目的.下面重點探究第(2)問,給出了13種解法.

2 解三角形的五種路徑分析

解三角形通常有如下五種路徑:

路徑1通解.運用正弦定理、余弦定理等解三角形的相關知識求解.

路徑2特征構造法.抓住條件和所求的特征,構造相應的圖形作答.

路徑3解析幾何法.通過建系,利用解析幾何相關知識作答.

路徑4向量法. 通過建系,借助向量相關知識作答.

路徑5幾何法.利用初中平面幾何相關知識作答.

結合上述分析,試題第(2)問的五種路徑與下面解法的對應關系如圖1所示.

3 試題第二問的13種解法

本題第(2)問由于已知AB,求AB邊上的高,因此可聯想利用面積公式求高;因為AB邊上的高與底構成直角三角形,則聯想利用直角三角形直接求高.

3.1 利用面積公式求解

3.1.1 借助三角形面積公式S=12ah

解法1~3借助三角形面積公式S=12ah解決問題,其中解法2和解法3,抓住條件A-C的特征,巧妙地構造出A-C這個角(形內構造,形外構造),利用角分線定理及勾股定理來求解,簡化運算.

解法1:由2sin(A-C)=sin B,得0lt;A-Clt;π6.

又由(1)知C=π4,則π4lt;Alt;5π12.所以△ABC是銳角三角形.

如圖2,過點B作BH⊥AC于點H,由第(1)問可得tan A=3.

又AB=5,則AH=102,BH=3210.

結合∠C=π4,可知CH=BH=3210.

設AB邊上的高為h,由面積公式可得S△ABC=12×210×3210=12×5×h,故h=6.圖3

解法2:由2sin(A-C)=sin B,得∠CABgt;∠C.設A-C=α,B=β.

如圖3,過點A作∠CAH=∠C交邊BC于點H.

結合∠C=π4,可知AH⊥BC.

由2sin α=sin β,結合正弦定理得AH=2BH.

又AB=5,則AH=25,BH=5.

由∠C=CAH=π4,得CH=25.

設AB邊上的高為h,由面積公式可得S△ABC=12×35×25=12×5×h,故h=6.

解法3:如圖4,過點C作∠ACK=∠ACB交線段BA延長線于點K,則CKCB=KAAB.易知∠CAB-∠ACB=∠K.

由2sin(∠CAB-∠ACB)=sin B,得CK=2BC.

所以KA=2AB=10.

又∠KCB=π2,由勾股定理得CB=35,CK=65.

設AB邊上的高為h,由面積公式可得S△kBC=12×35×65=12×15×h,所以h=6.

3.1.2 借助三角形面積公式S=12absin C

下面的解法4與解法5借助三角形面積公式S=12absin C解決問題.解法5依據已知AB和C,可求三角形的外接圓直徑2R,故聯想S△ABC=2R2sin A5sin Csin B,再利用面積等積式來求解.

解法4:在△ABC中,由第(1)問知sin A=31010,cos Agt;0,則cos A=1010.

由sin B=2sinA-π4,得sin B=255.

由正弦定理,得ABsin C=ACsin B=BCsin A.

又AB=5,sin B=255,sin C=22,sin A=31010,所以AC=210,BC=35.

設AB邊上的高為h,由三角形面積可得12×210×35×22=12×5×h,故h=6.

解法5:在△ABC中,由ABsin C=2R(R為△ABC外接圓的半徑),得2R=52.

由第(1)問可知sin A=31010,cos Agt;0,所以cos A=1010.

由sin B=2sinA-π4,得sin B=255.

由S△ABC=2R2sin A5sin C5sin B,得S△ABC=15.

設AB邊上的高為h,則15=12×5×h,故h=6.

3.2 直接求高

3.2.1 借助建系求點法

由三角形的高聯想建系,將問題轉化為求點C的坐標,結合五種途徑,可以嘗試利用解析幾何法和向量法求解.

解法6:如圖5,以A為原點,AB方向為x軸的正方向,建立如圖所示的平面直角坐標系,則A(0,0),B(5,0).

由第(1)問,可得tan A=3,tan B=-tan(A+C)=2.

所以直線AC的方程為y=3x;

直線BC的方程為y=-2x+10.

由y=3x,

y=-2x+10,解得x=2,

y=6,則C(2,6).

故CH=6,即所求的高.圖6

解法7:如圖6,以A為原點,AB方向為x軸的正方向,建立如圖所示的平面直角坐標系,則A(0,0),B(5,0).

由第(1)問,可得tan A=3.

設C(x,3x),則

AC=(x,3x),BC=(x-5,3x).

由AC5BC=|AC|5|BC|5cosπ4,結合向量有關公式,可得x(x-5)+(3x)2=x2+(3x)2×(x-5)2+(3x)2×22.

解得x=2,則C(2,6).故CH=6.

3.2.2 借助直角三角形直接求高

由三角形的高聯想直角三角形,利用直角三角形相關知識求解.

由2sin(A-C)=sin B,得0lt;A-Clt;π6.又C=π4,則π4lt;Alt;5π12.所以△ABC是銳角三角形.

下面可以有5種解法,具體見解法8~13:

解法8:(秒殺)如圖7,過C作CH⊥AB于點H,由第(1)問可知tan A=3,tan B=-tan(A+C)=2.

所以AH=CH3,BH=CH2.于是CH2+CH3=5,故CH=6.

注:也可由2sin(A-C)=sin B,得2sin(B+2C)=2sinB+π2=sin B,從而求得tan B=2.

解法9:由第(1)問知sin A=31010,則cos A=1010.

又sin B=2sinA-π4,所以sin B=255.

由正弦定理,得ABsin C=BCsin A.又AB=5,sin C=22,sin A=31010,所以BC=35.

設AB邊上的高為CH,則CH=BC×sin B=35×255=6.

解法10:由△ABC是銳角三角形,則△ABC的外接圓的圓心O在△ABC內.

如圖8,過點C作CH⊥AB于點H,過點O作OI⊥AB,OE⊥CH,垂足分別為I,E,連接OB,OC.因為ABsin C=2R(R為△ABC外接圓的半徑),所以2R=52,則OB=OC=522.

由∠ACB=π4,易知OI=IB=AI=52.

令AH=x,又tan A=3,則CH=3x,CE=3x-52.

于是由52-x2+3x-522=252,解得x=2.

故CH=6.

3.2.3 由C=π4構造圖式求出高

本題由A+B=3C,利用三角形內角和求出C=π4,由于∠C被AB邊上的高分成兩個角的和,所以聯想利用兩角和的正切公式建立關系式求解,即為解法11;觀察到∠C被AB邊上的高分成“箭頭型”圖,所以聯想構造相似三角形建立關系式求解,即為解法12;利用C=π4是π2的半角,所以聯想構造正方形建立關系式求解,即為解法13.

解法11:如圖7,過點C作CH⊥AB于點H,由第(1)問可知tan A=3.

令AH=x,則CH=3x,BH=5-x.

設∠ACH=α,∠BCH=β,則α+β=π4.

于是tanπ4=tan α+tan β1-tan αtan β=13+5-x3x1-1355-x3x=1.

解得x=2,即AH=2,所以CH=6.

解法12:圖9如圖9,過點C作CH⊥AB于點H.由第(1)問可知tan A=3.

令AH=x,則CH=3x.

在CH邊上截取HE=AH,HF=BH,連接AE,BF.

易知△CEA∽△BFC.

所以EAEC=CFBF,即2x2x=4x-52(5-x).

解得x=2,故CH=6.

解法13:如圖10,過點C作CH⊥AB于點H.由第(1)問可知tan A=3.

令AH=x,則CH=3x.

在平面ABC內,將△HCA沿AC翻折至△ECA,△CHB沿BC翻折至△CFB,延長EA,FB交于點I.

于是四邊形CEIF為正方形.

所以EI=FI=3x,AI=2x,BI=3x-(5-x)=4x-5.

在Rt△ABI中,由(2x)2+(4x-5)2=25,得x=2.

故CH=6.4 題源追溯

本試題改編于蘇教版高中數學必修第二冊第62頁的第4題,現將原題摘錄如下:

如圖11,在△ABC中,AD⊥BC,垂足為D,BD∶DC∶AD=2∶3∶6,求∠BAC的大小.

5 溫故知新

(1)(2022-2023學年湖北部分重點中學高三第一次聯考)在△ABC中,AB=2,AC=1,BD=λBC,λ∈(0,1).

(i)若∠BAC=120°,λ=12,求AD的長度;

(ii)若AD為角平分線,且AD=1,求△ABC的面積.

第(i)問通法:由BD=λBC,λ=12,可知D是BC的中點.

所以AD=12(AB+AC).

又AB=2,AC=1,∠BAC=120°,則

AD2=14(AB+AC)2=14AB2+14AC2+12|AB|·|AC|·cos A=34.

所以AD2=34,即AD=32.

第(i)問秒殺法:取AC中點E,連接DE.

所以AE=12AC=12.

又BD=12BC,所以D是BC的中點.

所以DE=12AB=1,∠DEA=60°.

在△ADE中,由余弦定理得AD2=1+122-2×1×12×cos 60°=34,即AD=32.

第(ii)問通法:由S△ABC=S△ABD+S△ACD,得12AB×AC×sin ∠BAC=12AB×AD×sin∠BAD+12AC×AD×sin∠CAD.

又AD為角平分線,所以可得cos∠BAD=34,sin∠BAD=74,從而sin∠BAC=378.

故S△ABC=12AB×AC×sin∠BAC=12×1×2×378=378.

第(ii)問秒殺法:如圖12,過點C作CK平行AD交BA延長線于點K.

由AD為角平分線,可知DCBD=ACAB=12.

又CK∥AD,則DCBD=AKAB=12,DBBC=ADKC=23.

又AD=1,AB=2,所以AK=1,KC=32.

故S△ABC=2S△AKC=378.

(2)(2023全國甲卷5理科卷第16題)在△ABC中,AB=2,∠BAC=60°,BC=6,D為BC上一點,AD為∠BAC的平分線,則AD=.

通解:因為AB=2,∠BAC=60°,BC=6,由余弦定理得6=AC2+4-2AC×2×cos 60°,所以AC=1+3.由三角形面積公式,可得

S△ABC=12×2×(1+3)×sin 60°=12×2×AD×sin 30°+12×AD×(1+3)×sin 30°.

解得AD=2.

秒殺:因為AB=2,∠BAC=60°,BC=6,由正弦定理得6sin 60°=2sin C,所以∠C=45°或135°.由三角形內角和等于180°,得∠C=45°.所以∠ADB=∠B=75°.

故AD=AB=2.

猜你喜歡
思維導圖
基于思維導圖的PBL教學法在高職內科護理教學中的探究
思維導圖在英語學習中的運用
巧用“思維導圖”提高學生英語自主學習的能力
學海無涯“圖”作舟
活用思維導圖,突破歷史教學重難點
考試周刊(2016年84期)2016-11-11 23:49:45
思維導圖在初中英語詞匯教學中的應用研究
思維可視化技術應用于課堂教學
科技視界(2016年18期)2016-11-03 21:55:21
論思維導圖在初中英語閱讀教學的應用
人間(2016年26期)2016-11-03 17:10:11
思維導圖在初中物理概念課教學中的應用
思維導圖軟件輔助初中數學教學的應用研究
主站蜘蛛池模板: 中国特黄美女一级视频| 日韩资源站| 九九九久久国产精品| 91在线免费公开视频| 日本91在线| 亚洲日韩精品欧美中文字幕| AV老司机AV天堂| 亚洲区欧美区| 日韩国产黄色网站| 1769国产精品视频免费观看| 精品国产免费观看一区| 久久久受www免费人成| 欧美α片免费观看| 国产欧美成人不卡视频| 国产精品区网红主播在线观看| 亚洲成A人V欧美综合| 亚洲永久免费网站| 2020精品极品国产色在线观看 | 一本无码在线观看| 99尹人香蕉国产免费天天拍| 午夜福利在线观看成人| 九九精品在线观看| 久久精品无码专区免费| 久久国产精品嫖妓| av大片在线无码免费| 亚洲 欧美 中文 AⅤ在线视频| 性色一区| 99国产精品一区二区| 色婷婷亚洲综合五月| 狼友视频国产精品首页| 国产精品福利一区二区久久| 国产精品私拍99pans大尺度| 67194成是人免费无码| 国产91麻豆视频| 欧美日韩国产在线观看一区二区三区| 欧美日韩中文字幕在线| 精品久久国产综合精麻豆| 国产不卡国语在线| 色天天综合久久久久综合片| 青青草综合网| 国产女人18毛片水真多1| 波多野结衣一区二区三区88| 中文字幕久久精品波多野结| 久久精品国产电影| 国产精品短篇二区| 亚洲欧州色色免费AV| 亚洲色偷偷偷鲁综合| 亚洲中文字幕97久久精品少妇| 国产一级毛片在线| 亚洲成人黄色在线| 精品人妻无码中字系列| 亚洲无线一二三四区男男| 91精品人妻一区二区| 久久亚洲日本不卡一区二区| 国产成人免费| 亚洲香蕉伊综合在人在线| 色综合久久综合网| 亚洲日韩国产精品无码专区| 免费国产高清精品一区在线| 爆乳熟妇一区二区三区| 专干老肥熟女视频网站| 在线精品自拍| 午夜毛片免费看| 国产精品亚洲专区一区| 夜夜爽免费视频| 国产在线日本| 欧美无专区| 欧日韩在线不卡视频| 中日韩一区二区三区中文免费视频 | 精品视频第一页| 67194成是人免费无码| 精品日韩亚洲欧美高清a | 国产精品成人免费视频99| 天天干伊人| 不卡的在线视频免费观看| 尤物在线观看乱码| 久久国产亚洲偷自| 97se亚洲| 亚洲AV无码乱码在线观看代蜜桃| 亚洲a免费| 欧美国产日产一区二区| 免费一级无码在线网站|