馮 春
[摘要]培養(yǎng)學生創(chuàng)新思維,教師應(yīng)首先提高教師本身的創(chuàng)新意識和在教學上的創(chuàng)新,做教學的有心人。積極引入現(xiàn)代教育技術(shù),并引導學生積極探索,勇于質(zhì)疑,敢于猜想,加強訓練。
[關(guān)鍵詞]數(shù)學教學中 創(chuàng)新思維 實踐與體會
中圖分類號:G42文獻標識碼:A文章編號:1671-7597(2009)0220142-01
開發(fā)人的創(chuàng)造力、培養(yǎng)學生的創(chuàng)新意識、創(chuàng)新精神,訓練學生的創(chuàng)造性思維,發(fā)展他們的創(chuàng)新能力,提高創(chuàng)新素質(zhì)有著重要的社會現(xiàn)實意義。而培養(yǎng)學生的創(chuàng)新能力最關(guān)鍵是培養(yǎng)學生的創(chuàng)新思維的能力。那么,如何在中學數(shù)學教學中培養(yǎng)學生的創(chuàng)新思維呢?
一、激發(fā)創(chuàng)造欲望,培養(yǎng)學生的創(chuàng)新意識
1.學生的創(chuàng)新能力要靠有創(chuàng)新精神的教師去培養(yǎng)。
數(shù)學教師要把培養(yǎng)學生創(chuàng)新意識和創(chuàng)新能力作為數(shù)學教學的一個目標,讓學生主動地參與數(shù)學活動的全過程,使學生一邊學習、一邊實踐,在實踐中探索和創(chuàng)造。要用創(chuàng)新精神去尋找培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新能力。
2.激發(fā)并保持學生穩(wěn)固持久的學習興趣。
在導入新課教學時,常用科學家科學發(fā)現(xiàn)的過程的故事;用古人生產(chǎn)生活中的實際應(yīng)用的故事等引入以激起學生學習興趣。如我在初一引入負數(shù)的教學時,先通過介紹古代人是怎樣使用算籌計數(shù)的,并逐步發(fā)展到今天所要學的負數(shù)的。講初二幾何的勾股定理時,講了“百牛定律”的故事,以及我國古人在測量土地時是怎樣通過“打繩結(jié)”畫直角等有趣的故事來說明勾股定理的發(fā)現(xiàn)過程,從而激發(fā)學生的學習興趣的。
3.鼓勵學生大膽質(zhì)疑,增強學生的自尊和自信。
在課堂教學中必須營造一種生動活潑、愉悅有序的教學氣氛,改變過去那種以教師講學生聽的單向交流為允許學生討論、師生對話的多向交流,縮短師生距離,使師生處于平等的地位,逐步消除學生課堂拘謹?shù)木置妗9膭顚W生大膽質(zhì)疑,使學生逐步養(yǎng)成質(zhì)疑的科學素質(zhì)。并在方式方法上注意到不論學生提出什么問題或回答問題是否正確都要給予熱情鼓勵。力求多一些鼓勵和表揚,少一些批評和指責,以消除學生的畏懼心理。注意啟迪、挖掘、放縱學生思維,給學生答疑、質(zhì)疑的機會和充分信任與尊重,增強學生了的自尊自信心。
4.激發(fā)和利用學生的好奇心培養(yǎng)學生創(chuàng)新能力。
教學中充分激發(fā)和利用學生的好奇心對培養(yǎng)學生創(chuàng)新能力和提高教學效果是十分有益的,而這一結(jié)果又能使學生的好奇心理得到進一步強化。如用現(xiàn)代化教學手段增強新奇感,如用多媒體演示太空星球的運動引入“圓錐曲線”,用幾何畫板演示圓錐曲線的生成過程以及演示點與圓、直線與圓、圓與圓的不同位置關(guān)系等等;運用實際生活中的現(xiàn)象增加趣味性,如用高斯計算前100個自然數(shù)的和的故事引入等差數(shù)列;運用與直覺相矛盾的現(xiàn)象激出好奇,如用畫“帶箭頭”和“帶箭尾”的等長線段的視覺誤差或圓柱形茶杯的高與直徑的視覺誤差激出好奇;在講空間中直線的位置關(guān)系時,用如下問題引入:用6根火柴能組成4個三角形嗎?學生受思維定勢的影響,僅局限于在一個平面內(nèi),無論如何是擺不出來的,這時他們就會產(chǎn)生疑問:6根火柴真能組成4個三角形嗎?從學生的眼神里可以看到他們強烈的探求欲望,這時只需輕輕一點:可以豎起來試試,從而把學生的思維推向空間,很快獲得成功。進而再問12根火柴最多能拼成幾個面積相等的正方形時,學生就很快會得出正確答案了。通過這些有趣例子,能有效地打破學生單項思維,激發(fā)出學習新知識的欲望。
二、數(shù)學課堂教學中多角度培養(yǎng)學生的創(chuàng)新思維
1.鼓勵學生大膽的猜測,大膽的假設(shè),展開合理的想象。
直覺思維是對事物的一種迅速地識別、理解和判斷。它沒有經(jīng)過明顯的中間推理過程,但它是數(shù)學發(fā)現(xiàn)中的關(guān)鍵因素,是邏輯的飛躍和升華。它具有直接性、猜想性、和不可解釋性的特點。愛因斯坦認為,在科學的創(chuàng)造過程中,從經(jīng)驗材料到提出新的思想之間,沒有“邏輯的橋梁”,必須訴諸直覺和靈感,“我相信直覺和靈感”。在數(shù)學教學過程中,教師要積極鼓勵學生大膽的猜測,大膽的假設(shè),展開合理的想象,并即時記下思考過程中一些偶然出現(xiàn)的新異的念頭,再通過綜合收斂對每一種想法一一進行驗證,從而發(fā)現(xiàn)和創(chuàng)造。因此在提倡素質(zhì)教育的今天,要注重培養(yǎng)學生的直覺思維能力。比如數(shù)學教學中通過教俱的直觀演示,或通過對某一“數(shù)學形式”從其“形”的結(jié)構(gòu)上觀察發(fā)現(xiàn)規(guī)律,或通過直接觀察幾何圖形,從中發(fā)現(xiàn)所隱含的數(shù)學關(guān)系,從而對這一問題有深刻的理解和印象。
2.加強發(fā)散思維訓練,促進創(chuàng)造思維的發(fā)展。
發(fā)散思維是創(chuàng)造思維的重要支點,是學生將來成為創(chuàng)造性人才的基礎(chǔ)。一個人的創(chuàng)新,無非是想到別人還未想到的可能性,或者說,就是別人思維尚未擴散到的領(lǐng)域,被你的思維擴散到了。比如在數(shù)學解題教學中,“對同一個數(shù)學問題,有的學生可能冥思苦想,百思不得其解。”什么原因?歸根到底,就是他的思維尚未擴散到能夠完成解題的思路上來。所以說我們實施創(chuàng)造教育,大量培養(yǎng)創(chuàng)造型人才,就必須將發(fā)散思維的訓練、發(fā)散思維能力的培養(yǎng)放在重要地位上。
在教學中若能適當?shù)剡M行一題多解的練習,積極引導學生從不同的思路入手,不依常規(guī),導求變化,探究多種解法,可以溝通知識之間的聯(lián)系,從而達到靈活多變,促使學生向多層次,多方向發(fā)散,這樣比解答多道題更有效,并使學生發(fā)散思維得到不斷的訓練和提高。
3.培養(yǎng)收斂思維,提高創(chuàng)造能力。
收斂思維和發(fā)散思維是創(chuàng)造思維過程中,相互促進彼此溝通互,相互轉(zhuǎn)化的統(tǒng)一的兩個方面。對創(chuàng)造思維來說,收斂思維雖然是在發(fā)散思維的基礎(chǔ)上進行的,并且它可以看作創(chuàng)造思維的第二階段。但它同樣是重要的。因為創(chuàng)造思維的進行,特別是創(chuàng)造成果的獲得,最后總是在收斂思維階段取得實現(xiàn)的。發(fā)散思維只是為創(chuàng)造思維提供了思維方向的各種可能性,由發(fā)散思維產(chǎn)生的許多觀點、設(shè)想、方法,有的是正確的,有的是不正確的;有的簡單,有的過于復雜。那么如何作出正確的選擇呢?收斂思維就是要對這些由發(fā)散思維所提出的各種可能性,逐一討論、分析、綜合,作出比較、評價和選擇,從中得出最終的抉擇和判斷,最后將各種假設(shè)變?yōu)榻鉀Q問題的現(xiàn)實方案。如果一個人僅僅善于發(fā)散思維,而缺乏收斂思維的素質(zhì),就不能進行正確的判斷和決策,即使產(chǎn)生了非常有價值的發(fā)散思維成果,也不能使之獲得成功。所以說發(fā)散思維和收斂思維如同創(chuàng)造思維的兩翼缺一不可。數(shù)學教學對收斂思維的培養(yǎng)是多方面的。比如在解證題教學過程中,先讓學生通過發(fā)散思維列舉出各種可能的方案,然后指導他們進行比較、分析、綜合,對這些方法、方案、各種思路的優(yōu)劣、簡捷和繁瑣以及成功與否作出判斷,最后選擇一個行之有效的方案,使數(shù)學問題得到圓滿解決。這不僅培養(yǎng)了發(fā)散思維,同時也培養(yǎng)了收斂思維。
總之,首先要提高教師本身的創(chuàng)新意識和在教學上的創(chuàng)新,做教學的有心人。積極引入現(xiàn)代教育技術(shù),并引導學生積極探索,勇于質(zhì)疑,敢于猜想,使思維更活躍,更聰慧。