方先金
【摘要】提高中學數(shù)學教學質量,不僅僅是為了提高學生的數(shù)學成績,更重要的是能使學生學到有用的數(shù)學。為此,筆者認為在中學數(shù)學教學中構建數(shù)學建模意識無疑是我們中學數(shù)學教學改革的一個正確的方向。本文結合自己的教學體會,從理論上及實踐上闡述:一是構建數(shù)學建模意識的基本方法。二是通過建模教學培養(yǎng)學生的創(chuàng)新思維。
【關鍵詞】數(shù)學建模 數(shù)學模型方法 數(shù)學建模意識 創(chuàng)新思維
一、數(shù)學建模與數(shù)學建模意識
著名數(shù)學家懷特海曾說:“數(shù)學就是對于模式的研究”。
所謂數(shù)學模型,是指對于現(xiàn)實世界的某一特定研究對象,為了某個特定的目的,在做了一些必要的簡化假設,運用適當?shù)臄?shù)學工具,并通過數(shù)學語言表述出來的一個數(shù)學結構,數(shù)學中的各種基本概念,都以各自相應的現(xiàn)實原型作為背景而抽象出來的數(shù)學概念。各種數(shù)學公式、方程式、定理、理論體系等等,都是一些具體的數(shù)學模型。而通過對問題數(shù)學化,模型構建,求解檢驗使問題獲得解決的方法稱之為數(shù)學模型方法。我們的數(shù)學教學說到底實際上就是教給學生前人給我們構建的一個個數(shù)學模型和怎樣構建模型的思想方法,以使學生能運用數(shù)學模型解決數(shù)學問題和實際問題。
具體的講數(shù)學模型方法的操作程序大致上為:
由此,我們可以看到,培養(yǎng)學生運用數(shù)學建模解決實際問題的能力關鍵是把實際問題抽象為數(shù)學問題,必須首先通過觀察分析、提煉出實際問題的數(shù)學模型,然后再把數(shù)學模型納入某知識系統(tǒng)去處理,這不但要求學生有一定的抽象能力,而且要有相當?shù)挠^察、分析、綜合、類比能力。學生的這種能力的獲得不是一朝一夕的事情,需要把數(shù)學建模意識貫穿在教學的始終,也就是要不斷的引導學生用數(shù)學思維的觀點去觀察、分析和表示各種事物關系、空間關系和數(shù)學信息,從紛繁復雜的具體問題中抽象出我們熟悉的數(shù)學模型,進而達到用數(shù)學模型來解決實際問題,使數(shù)學建模意識成為學生思考問題的方法和習慣。
二、構建數(shù)學建模意識的基本途徑
1.為了培養(yǎng)學生的建模意識,中學數(shù)學教師應首先需要提高自己的建模意識。這不僅意味著我們在教學內容和要求上的變化,更意味著教育思想和教學觀念的更新。中學數(shù)學教師除需要了解數(shù)學科學的發(fā)展歷史和發(fā)展動態(tài)之外,還需要不斷地學習一些新的數(shù)學建模理論,并且努力鉆研如何把中學數(shù)學知識應用于現(xiàn)實生活。
2.數(shù)學建模教學還應與現(xiàn)行教材結合起來研究。教師應研究在各個教學章節(jié)中可引入哪些模型問題。要經常滲透建模意識,這樣通過教師的潛移默化,學生可以從各類大量的建模問題中逐步領悟到數(shù)學建模的廣泛應用,從而激發(fā)學生去研究數(shù)學建模的興趣,提高他們運用數(shù)學知識進行建模的能力。
3.注意與其它相關學科的關系。由于數(shù)學是學生學習其它自然科學以至社會科學的工具而且其它學科與數(shù)學的聯(lián)系是相當密切的。因此我們在教學中應注意與其它學科的呼應,這不但可以幫助學生加深對其它學科的理解,也是培養(yǎng)學生建模意識的一個不可忽視的途徑。這樣的模型意識不僅僅是抽象的數(shù)學知識,而且將對他們學習其它學科的知識以及將來用數(shù)學建模知識探討各種邊緣學科產生深遠的影響。
4.在教學中還要結合專題討論與建模法研究。我們可以選擇適當?shù)慕n},通過討論、分析和研究,熟悉并理解數(shù)學建模的一些重要思想,掌握建模的基本方法。甚至可以引導學生通過對日常生活的觀察,自己選擇實際問題進行建模練習,從而讓學生嘗到數(shù)學建模成功的“甜”和難于解決的“苦”借亦拓寬視野、增長知識、積累經驗。這亦符合玻利亞的“主動學習原則”,也正所謂“學問之道,問而得,不如求而得之深固也”。
三、把構建數(shù)學建模意識與培養(yǎng)學生創(chuàng)造性思維過程統(tǒng)一起來
我認為培養(yǎng)學生創(chuàng)造性思維的過程有三點基本要求。第一,對周圍的事物要有積極的態(tài)度。第二,要敢于提出問題。第三,善于聯(lián)想,善于理論聯(lián)系實際。因此在數(shù)學教學中構建學生的建模意識實質上是培養(yǎng)學生的創(chuàng)造性思維能力,因為建?;顒颖旧砭褪且豁梽?chuàng)造性的思維活動。它既具有一定的理論性又具有較大的實踐性;既要求思維的數(shù)量,還要求思維的深刻性和靈活性,而且在建?;顒舆^程中,能培養(yǎng)學生獨立,自覺地運用所給問題的條件,尋求解決問題的最佳方法和途徑,可以培養(yǎng)學生的想象能力,直覺思維、猜測、轉換、構造等能力。而這些數(shù)學能力正是創(chuàng)造性思維所具有的最基本的特征。
1.發(fā)揮學生的想象能力,培養(yǎng)學生的直覺思維
眾所周知,數(shù)學史上不少的數(shù)學發(fā)現(xiàn)來源于直覺思維,如笛卡爾坐標系、費爾馬大定理、歌德巴赫猜想、歐拉定理等,應該說它們不是任何邏輯思維的產物,而是數(shù)學家通過觀察、比較、領悟、突發(fā)靈感發(fā)現(xiàn)的。通過數(shù)學建模教學,使學生有獨到的見解和與眾不同的思考方法,如善于發(fā)現(xiàn)問題,溝通各類知識之間的內在聯(lián)系等是培養(yǎng)學生創(chuàng)新思維的核心。
2.構建建模意識,培養(yǎng)學生的轉換能力
恩格斯曾說過:“由一種形式轉化為另一種形式不是無聊的游戲而是數(shù)學的杠桿,如果沒有它,就不能走很遠?!庇捎跀?shù)學建模就是把實際問題轉換成數(shù)學問題,因此如果我們在數(shù)學教學中注重轉化,用好這根有力的杠桿,對培養(yǎng)學生思維品質的靈活性、創(chuàng)造性及開發(fā)智力、培養(yǎng)能力、提高解題速度是十分有益的。
3.以“構造”為載體,培養(yǎng)學生的創(chuàng)新能力
“一個好的數(shù)學家與一個蹩腳的數(shù)學家之間的差別,就在于前者有許多具體的例子,而后者則只有抽象的理論。”
我們前面講到,“建?!本褪菢嬙炷P?但模型的構造并不是一件容易的事,又需要有足夠強的構造能力,而學生構造能力的提高則是學生創(chuàng)造性思維和創(chuàng)造能力的基礎:創(chuàng)造性地使用已知條件,創(chuàng)造性地應用數(shù)學知識。只要我們在教學中教師仔細地觀察,精心的設計,可以把一些較為抽象的問題,通過現(xiàn)象除去非本質的因素,從中構造出最基本的數(shù)學模型,使問題回到已知的數(shù)學知識領域,并且能培養(yǎng)學生的創(chuàng)新能力。
參考文獻:
[1]沈文選.數(shù)學建模.湖南師大出版社,1999.
[2]中國教育學會中學數(shù)學教學專業(yè)委員會.面向21世紀的數(shù)學教學.浙江教育出版社,1997.
[3]胡炯濤,張凡.中學數(shù)學教學縱橫談.山東教育出版社,1997.
[4]黃立俊,方水清.增強應用意識,增強建模能力.中學數(shù)學雜志,1998.
[5]薛治剛.高中數(shù)學應用問題.吉林科學技術出版社,北京朗曼教學與研究中心,1998.