











摘 要:
為了解決在永磁同步電機(jī)(PMSM)驅(qū)動(dòng)控制中,電流傳感器可能出現(xiàn)故障導(dǎo)致系統(tǒng)失控的問(wèn)題,提出一種變參數(shù)的相電流重構(gòu)方法,對(duì)定子電流進(jìn)行精確觀測(cè),實(shí)現(xiàn)PMSM在無(wú)位置傳感器控制下的電流傳感器容錯(cuò)控制。研究了電機(jī)參數(shù)擾動(dòng)和無(wú)位置傳感器控制觀測(cè)誤差等非理想因素對(duì)直接搭建龍貝格觀測(cè)器精度的影響。分析了觀測(cè)電流的幅值誤差和角度誤差特性,通過(guò)引入2個(gè)自適應(yīng)變化參數(shù)以調(diào)整重構(gòu)電流的幅值,消除非理想因素對(duì)重構(gòu)電流精度的影響。搭建仿真和實(shí)驗(yàn)平臺(tái)驗(yàn)證算法有效性。實(shí)驗(yàn)結(jié)果表明,電流傳感器故障后,電角度觀測(cè)誤差僅增加1°,dq軸電流波動(dòng)峰峰值僅增加0.1 A。該算法能夠?qū)崿F(xiàn)電機(jī)的轉(zhuǎn)速、位置及電流信息的準(zhǔn)確觀測(cè),使得系統(tǒng)具有良好的穩(wěn)態(tài)精度和動(dòng)態(tài)性能。
關(guān)鍵詞:永磁同步電機(jī);無(wú)位置傳感器控制;電流傳感器;容錯(cuò)運(yùn)行;電流狀態(tài)觀測(cè)器;相電流重構(gòu)
DOI:10.15938/j.emc.2024.08.001
中圖分類號(hào):TM351
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1007-449X(2024)08-0001-09
Research on sensorless fault-tolerant control algorithm for interior permanent magnet synchronous machine under sensor fault conditions
FANG Yuchao1, WANG Bo1, WANG Yuankui2, WANG Yunchong1, HUANG Zhanghao1, SHEN Jianxin1
(1.College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; 2.Ocean College, Zhejiang University, Zhoushan 316021, China)
Abstract:
In order to solve the problem that the current sensors may malfunction in permanent magnet synchronous machine (PMSM) drives, a phase current reconstruction algorithm with variable parameters was proposed to accurately estimate the stator current and realize fault-tolerant control of the current sensor under the position sensorless control of PMSM. The influence of non-ideal factors such as motor parameter variation and sensorless control strategy estimated error on the accuracy of directly constructed Luenberger observer was studied. The amplitude error and angle error characteristics of the estimated current were analyzed. Two adaptive parameters were introduced to adjust the amplitude of the reconstructed current, and the influence on non-ideal factors on the accuracy of the reconstructed current can be eliminated. A simulation and experimental platform were built to verify effectiveness of this algorithm. The experimental results show that after the current sensor malfunctions, the estimated error of electric angle is only increased by 1°, and the peak-to-peak value of dq axis current ripple is only increased by 0.1 A. The algorithm can accurately estimate the speed, position and current information of the motor, and the system has good steady-state accuracy and dynamic performance.
Keywords:permanent magnet synchronous machine; sensorless control; current sensor; fault-tolerant control; current state observer; phase current reconstruction
0 引 言
永磁同步電機(jī)(permanent magnet synchronous machine,PMSM)具有結(jié)構(gòu)簡(jiǎn)單、運(yùn)行可靠、功率密度高等優(yōu)點(diǎn),已廣泛應(yīng)用于航空航天、工業(yè)驅(qū)動(dòng)和高精度伺服控制等領(lǐng)域[1-4]。通常使用磁場(chǎng)定向控制(field-oriented control,F(xiàn)OC)實(shí)現(xiàn)對(duì)電機(jī)的高精度控制,需要一個(gè)位置傳感器和至少兩個(gè)相電流傳感器。然而使用位置傳感器將增加系統(tǒng)的成本和體積,在一些特定情況下沒(méi)有足夠的空間來(lái)安裝位置傳感器,因此無(wú)位置傳感器控制得到了廣泛的關(guān)注與應(yīng)用。同樣,由于制造工藝、振動(dòng)、沖擊、高溫、高濕等惡劣的工況及老化等因素,電流傳感器可能會(huì)出現(xiàn)故障。根據(jù)文獻(xiàn)[5]的調(diào)查數(shù)據(jù),傳感器的故障占風(fēng)電應(yīng)用中整機(jī)系統(tǒng)故障總數(shù)的14.1%。如果電流傳感器出現(xiàn)故障,會(huì)因信號(hào)不正確而損壞閉環(huán)控制系統(tǒng),造成超速、過(guò)流等故障,損壞逆變器和設(shè)備,甚至造成人身傷亡等事故。因此,有必要在電流傳感器發(fā)生故障時(shí),提供一種可靠的容錯(cuò)控制策略(fault tolerant control,F(xiàn)TC)。
無(wú)位置傳感器算法主要分為兩類,基于基波模型的方法和基于電機(jī)凸極性的方法[6]。基于基波模型方法主要通過(guò)各種觀測(cè)器,如滑模觀測(cè)器、拓展?fàn)顟B(tài)觀測(cè)器、擾動(dòng)觀測(cè)器、卡爾曼濾波器等,以電流和電壓作為觀測(cè)器輸入得到反電動(dòng)勢(shì)或磁鏈信息,進(jìn)一步通過(guò)反三角函數(shù)或鎖相環(huán)提取轉(zhuǎn)子位置信息[7-14]。基于電機(jī)凸極性方法通常通過(guò)施加高頻電壓信號(hào)采集產(chǎn)生的高頻電流信號(hào),進(jìn)而解算出電機(jī)轉(zhuǎn)子位置信息[15-16]。針對(duì)電流傳感器故障的容錯(cuò)運(yùn)行,文獻(xiàn)[17-20]采用龍貝格觀測(cè)器、滑模觀測(cè)器等方法對(duì)故障電流進(jìn)行重構(gòu),采用重構(gòu)電流代替實(shí)際電流進(jìn)行FOC控制。文獻(xiàn)[21]提出一種針對(duì)電流傳感器直流偏置故障的容錯(cuò)控制方法,通過(guò)計(jì)算得到直流偏置大小,再對(duì)其進(jìn)行補(bǔ)償?shù)玫綄?shí)際電流。文獻(xiàn)[22]采用的方法可對(duì)電流傳感器倍率誤差進(jìn)行檢測(cè),對(duì)測(cè)量電流進(jìn)行修正后得到實(shí)際電流。
對(duì)于無(wú)位置傳感器控制下的PMSM電流傳感器容錯(cuò)運(yùn)行控制,若僅僅簡(jiǎn)單將無(wú)位置傳感器算法與電流重構(gòu)算法相結(jié)合,會(huì)出現(xiàn)耦合問(wèn)題,即位置估計(jì)的精度對(duì)電流重構(gòu)算法的影響很大,反之亦然,因此位置及電流觀測(cè)精度較差,從而導(dǎo)致抖振問(wèn)題和動(dòng)態(tài)控制性能的下降。文獻(xiàn)[23-24]使用一個(gè)包含電流誤差構(gòu)建模塊的觀測(cè)器搭建全階滑模觀測(cè)器和龍貝格觀測(cè)器得到電機(jī)電流和位置信息,但其電流誤差構(gòu)建模塊受觀測(cè)位置精度影響。文獻(xiàn)[25]提出一種采用坐標(biāo)變換和陷波器的電流重構(gòu)方案,可以消除位置估計(jì)誤差對(duì)電流重構(gòu)的影響,但電機(jī)參數(shù)擾動(dòng)會(huì)影響觀測(cè)器精度。
假設(shè)傳統(tǒng)方法可正常采集相電流為A相電流在靜止兩相坐標(biāo)系下搭建觀測(cè)器,可以很好地觀測(cè)到α相電流,但β相電流觀測(cè)精度較差。B相電流同時(shí)包含α相電流和β相電流,基于此,本文將可采集到的電流作為B相電流搭建電流狀態(tài)觀測(cè)器,并引入2個(gè)可調(diào)系數(shù)修正觀測(cè)電流幅值,理論上可消除電機(jī)參數(shù)攝動(dòng)及無(wú)位置傳感控制算法的誤差等對(duì)電流重構(gòu)算法精度的影響,因此減小重構(gòu)電流對(duì)無(wú)位置傳感器算法精度的影響。
4 仿真分析
表1為仿真及實(shí)驗(yàn)所用PMSM及控制器具體參數(shù)。為驗(yàn)證所提電流狀態(tài)觀測(cè)器算法的性能,在MATLAB/Simulink環(huán)境搭建仿真模型,圖4為IPMSM矢量控制框圖。
圖5為不考慮非理想因素對(duì)觀測(cè)器的影響,在6 000 r/min、0.4 N·m工況下在MATLAB/Simulink平臺(tái)的仿真結(jié)果。實(shí)線為實(shí)際α軸電流,虛線為觀測(cè)α軸電流,可見,觀測(cè)電流誤差較大,影響位置和速度觀測(cè)精度,同時(shí)不利于電機(jī)的FOC控制。
在MATLAB/Simulink中對(duì)提出的無(wú)位置傳感器控制下的電流傳感器容錯(cuò)運(yùn)行策略分別在以下不同工況進(jìn)行仿真驗(yàn)證。
工況Ⅰ: 電機(jī)在6 000 r/min下空載穩(wěn)態(tài)運(yùn)行;
工況Ⅱ: 電機(jī)在3 000 r/min、0.4 N·m下運(yùn)行,0.5 s提升轉(zhuǎn)速至6 000 r/min,在1.5 s降速至3 000 r/min;
工況Ⅲ:電機(jī)在6 000 r/min、0.4 N·m下運(yùn)行,0.5 s突加至0.8 N·m轉(zhuǎn)矩,在2 s突減至0.4 N·m轉(zhuǎn)矩。
仿真結(jié)果分別如圖6~圖8所示。
圖6為電機(jī)在空載下仿真結(jié)果。圖7為在轉(zhuǎn)速階躍變化工況下的仿真波形,可以實(shí)現(xiàn)轉(zhuǎn)速的快速變化,且電流觀測(cè)值可較好跟隨實(shí)際電流。圖8為在負(fù)載階躍變化工況下的仿真結(jié)果,可見,在不同轉(zhuǎn)速、不同負(fù)載下均可以保證較好的穩(wěn)態(tài)性能。在負(fù)載突變和轉(zhuǎn)速變化的動(dòng)態(tài)過(guò)程中,也可以準(zhǔn)確觀測(cè)電機(jī)的轉(zhuǎn)速及電流值。
5 實(shí)驗(yàn)分析
為驗(yàn)證電流傳感器容錯(cuò)控制方法有效性,搭建如圖9所示的實(shí)驗(yàn)平臺(tái)。使用STM32H743實(shí)現(xiàn)電機(jī)控制、PWM信號(hào)輸出及ADC采樣等功能,開關(guān)頻率為20 kHz,實(shí)驗(yàn)平臺(tái)中編碼器所得位置和速度信息及A、C相電流傳感器所得電流值僅用于比較觀測(cè)器精度,不用做電機(jī)控制反饋信號(hào)。電機(jī)參數(shù)如表1所示。
采用文獻(xiàn)[17]介紹的基于殘差的方式進(jìn)行故障診斷。圖10展示了電機(jī)在6 000 r/min、0.4 N·m下,A相電流傳感器在0.5 s時(shí)突然故障信號(hào)丟失,僅有B相電流傳感器可正常工作的實(shí)驗(yàn)波形。從實(shí)驗(yàn)結(jié)果可以看出,當(dāng)A相電流傳感器突然故障后,轉(zhuǎn)速經(jīng)過(guò)一個(gè)約20 r/min跌落后重新回到6 000 r/min,電角度觀測(cè)誤差均值由2°增加至3°,電角度誤差波動(dòng)峰峰值由1°增加至1.5°,dq軸電流波動(dòng)峰峰值由0.4 A增加至0.5 A。可以看出,采用所提容錯(cuò)控制策略,對(duì)電機(jī)的控制性能僅略有下降,仍可保證系統(tǒng)的穩(wěn)定運(yùn)行。
工況Ⅰ~工況Ⅲ下的實(shí)驗(yàn)結(jié)果分別如圖11~圖13所示。
圖11為6 000 r/min空載下實(shí)驗(yàn)結(jié)果,由于不可避免的摩擦轉(zhuǎn)矩等影響,實(shí)驗(yàn)中難以做到真正的空載,因此有很小的q軸電流。圖12為轉(zhuǎn)速階躍變化的實(shí)驗(yàn)結(jié)果,可以實(shí)現(xiàn)轉(zhuǎn)速的快速變化,穩(wěn)態(tài)過(guò)程中電角度誤差低于3°,經(jīng)過(guò)暫態(tài)過(guò)程后,電角度、轉(zhuǎn)速和電流觀測(cè)值可較好跟隨實(shí)際的轉(zhuǎn)速和電流信息。圖13為6 000 r/min下負(fù)載階躍變化時(shí)的實(shí)驗(yàn)結(jié)果,可見,在負(fù)載突變時(shí),電機(jī)性能穩(wěn)定,在動(dòng)態(tài)過(guò)程中,電角度誤差峰值約為6°,且可以準(zhǔn)確觀測(cè)電機(jī)的轉(zhuǎn)速及電流值。實(shí)驗(yàn)結(jié)果表明,通過(guò)變參數(shù)電流狀態(tài)觀測(cè)器可以精確重構(gòu)相電流實(shí)現(xiàn)較好的穩(wěn)態(tài)性能和動(dòng)態(tài)性能,保證系統(tǒng)在電流傳感器故障后仍可穩(wěn)定運(yùn)行。
6 結(jié) 論
本文通過(guò)將可正常采集相電流作為B相電流搭建觀測(cè)器,當(dāng)電機(jī)參數(shù)存在擾動(dòng)及無(wú)位置傳感器控制算法存在計(jì)算誤差時(shí),會(huì)使得觀測(cè)電流出現(xiàn)誤差。通過(guò)公式分析,當(dāng)觀測(cè)B相電流收斂至實(shí)際B相電流時(shí),α相電流和β相電流的相位誤差及幅值誤差只能同時(shí)存在或同時(shí)不存在。因此,可以通過(guò)引入2個(gè)可調(diào)參數(shù)調(diào)整觀測(cè)電流幅值,用消除幅值誤差的方式消除觀測(cè)誤差。仿真和實(shí)驗(yàn)結(jié)果表明,本方法穩(wěn)態(tài)精度高、動(dòng)態(tài)響應(yīng)快,驗(yàn)證了控制策略的正確性和有效性。
參 考 文 獻(xiàn):
[1] 黃依婷,沈建新,王云沖,等.基于遞推最小二乘法觀測(cè)器的永磁同步伺服電機(jī)變參數(shù)滑模控制[J].中國(guó)電機(jī)工程學(xué)報(bào), 2022,42(18):6835.
HUANG Yiting, SHEN Jianxin, WANG Yunchong, et al. Variable parameter sliding mode control of permanent magnet synchronous servo machine based on recursive least square observer[J]. Proceedings of the CSEE, 2022, 42(18):6835.
[2] DAN Hanbing, YUE Wei, XIONG Wenjing, et al. Open-switch and current sensor fault diagnosis strategy for matrix converter-based PMSM drive system[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1):875.
[3] HASHJIN S A, CORNE A, PANG Shengzhao, et al. Current sensorless control for WRSM using model-free adaptive control[J]. IEEE Transactions on Transportation Electrification, 2021,7(2):683.
[4] CHOI K, KIM Y, KIM S, et al. Current and position sensor fault diagnosis algorithm for PMSM drives based on robust state observer[J]. IEEE Transactions on Industrial Electronics, 2021,68(6):5227.
[5] ROIBRANT J, BERTLING L M.Survey of failures on wind power systems with focus on Swedish wind power plants during 1997-2005[J]. IEEE Transactions on Energy Conversion, 2007,22(1):167.
[6] WANG Gaolin, VALLA M, SOLSONA J. Position sensorless permanent magnet synchronous machine drives—a review[J]. IEEE Transactions on Industrial Electronics, 2020,67(7):5830.
[7] 徐奇?zhèn)ィY東昊,王益明,等.PMSM正切趨近律無(wú)位置傳感器角度補(bǔ)償方法研究[J].電機(jī)與控制學(xué)報(bào),2024, 28(1):26.
XU Qiwei, JIANG Donghao, WANG Yiming, et al. Angle compensation method using tangent reaching law for PMSM sensorless control system[J]. Electric Machines and Control, 2024, 28(1):26.
[8] GONG Chao, HU Yihua, GAO Jinqiu, et al. An improved delay-suppressed sliding-mode observer for sensorless vector-controlled PMSM[J]. IEEE Transactions on Industrial Electronics, 2020,67(7):5913.
[9] YE Shuaichen, YAO Xiaoxian. An enhanced SMO-based permanent-magnet synchronous machine sensorless drive scheme with current measurement error compensation[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021,9(4):4407.
[10] 倪禛霖,賈洪平. 基于卡爾曼濾波滑模觀測(cè)器的PMSM控制研究[J].大電機(jī)技術(shù),2019(4):12.
NI Zhenlin, JIA Hongping. Research on sensorless control method of PMSM based on Kalman filter sliding mode observer[J]. Large Electric Machine and Hydraulic Turbine, 2019(4):12.
[11] 吳偉亮,楊合民,胡靜,等. 內(nèi)置式永磁同步電機(jī)無(wú)位置傳感器控制研究 [J].大電機(jī)技術(shù),2021(3):24.
WU Weiliang, YANG Hemin, HU Jing, et al. Research on position sensorless control of interior permanent magnet synchronous motor[J]. Large Electric Machine and Hydraulic Turbine, 2021(3):24.
[12] 康爾良,吳炳道,禹聰. 基于LADRC控制的永磁同步電機(jī)無(wú)位置傳感器研究[J]. 電機(jī)與控制學(xué)報(bào),2023, 27(2):69.
KANG Erliang, WU Bingdao, YU Cong. Research on sensorless of permanent magnet synchronous motor based on LADRC control[J]. Electric Machines and Control, 2023, 27(2):69.
[13] 康爾良, 陳健. 永磁同步電機(jī)改進(jìn)滑模無(wú)位置傳感器控制[J]. 電機(jī)與控制學(xué)報(bào), 2022, 26(10):88.
KANG Erliang, CHEN Jian. Improved sliding mode sensorless control of permanent magnet synchronous motor[J].Electric Machines and Control, 2022,26(10):88.
[14] 趙文祥,宋世昌,周書文,等.改進(jìn)滑模觀測(cè)器的電流源逆變器驅(qū)動(dòng)PMSM無(wú)位置傳感器控制[J].電工技術(shù)學(xué)報(bào),2024,39(4):987.
ZHAO Wenxiang, SONG Shichang, ZHOU Shuwen, et al. Sensorless control of current source inverter driven PMSM with improved sliding mode observer[J]. Transactions of China Electrotechnical Society, 2024,39(4):987.
[15] 陳濤,周揚(yáng)忠,屈艾文,等.基于旋轉(zhuǎn)高頻電壓注入的六相串聯(lián)三相永磁同步電機(jī)系統(tǒng)轉(zhuǎn)子初始位置解耦觀測(cè)[J].電工技術(shù)學(xué)報(bào),2023,38(8):2073.
CHEN Tao, ZHOU Yangzhong, QU Aiwen, et al. Decoupling observation of rotor initial position of six-phase and three-phase permanent magnet synchronous motors series-connected system based on rotating high-frequency voltage injection[J]. Transactions of China Electrotechnical Society, 2023,38(8):2073.
[16] TANG Qipeng, SHEN Anwen, LUO Xin, et al. PMSM sensorless control by injecting HF pulsating carrier signal into ABC frame[J]. IEEE Transactions on Power Electronics, 2017,32(5):3767.
[17] ZHANG Guoqiang, WANG Guoxin, WANG Gaolin, et al. Fault diagnosis method of current sensor for permanent magnet synchronous motor drives[C]//2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), October 20-24, 2018, Niigata, Japan. 2018:20-24.
[18] MATHE L, KOPACZ C, BEDE L, et al. Sensor-fault tolerant control of PMSM in flux-weakening operation using LKF observer[C]//2012 Electrical Systems for Aircraft, Railway and Ship Propulsion,December 16-18,2012,Bologna,Italy.2012:1-6.
[19] KOMMURI S K, LEE S B, VELUVOLU K C. Robust sensors-fault tolerance with sliding mode estimation and control for PMSM drives[J]. IEEE/ASME Transactions on Mechatronics, 2018,23(1):17.
[20] BENG G F H, ZHANG Xinan, VILATHGAMUWA D M. Sensor fault-resilient control of interior permanent-magnet synchronous motor drives[J]. IEEE/ASME Transactions on Mechatronics, 2015,20(2):855.
[21] ATTAIANESE C, D’ARPINO M, MONACO M D, et al. Model-based detection and estimation of DC offset of phase current sensors for field oriented PMSM drives[J]. IEEE Transactions on Industrial Electronics, 2023, 70(6):6316.
[22] ATTAIANESE C, D’ARPINO M, MONACO M D, et al. Modeling and detection of phase current sensor gain faults in PMSM drives[J]. IEEE Access,2022,10:80106.
[23] ZHANG Guoqiang, WANG Gaolin, ZHOU Honglei, et al. Current sensor fault diagnosis and fault-tolerant control for encoderless PMSM drives based on dual sliding mode observers[C]//2019 IEEE Applied Power Electron Conference and Exposition (APEC), March 17-21, 2019, Aneheim, CA, USA.2019:2549-2553.
[24] WANG Gaolin, HAO Xiaofei, ZHAO Nannan, et al. Current sensor fault-tolerant control strategy for encoderless PMSM drives based on single sliding mode observer[J]. IEEE Transactions on Transportation Electrification, 2020, 6(2): 679.
[25] XU Guanda, XIAO Fei, LIAN Chuanqiang.A position sensorless control strategy for PMSM drives with single phase current sensor[J/OL]. IEEE Transactions on Transportation Electrification(Early Access):1-11 [2023-09-27].doi:10.1109/TTE.2023.3319367.
[26] 陸婋泉. 永磁同步電機(jī)無(wú)傳感器矢量控制技術(shù)研究[D]. 南京:東南大學(xué), 2016.
(編輯:邱赫男)
收稿日期: 2024-04-23
基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃(2022YFB3403100)
作者簡(jiǎn)介:房鈺超(1995—),男,博士研究生,研究方向?yàn)橛来磐诫姍C(jī)容錯(cuò)控制技術(shù);
王 博(1979—),男,博士研究生,研究員,研究方向?yàn)殡姍C(jī)設(shè)計(jì)及控制技術(shù);
王元奎(1978—),男,博士研究生,研究方向?yàn)殡姍C(jī)控制及電磁抑制;
王云沖(1987—),男,博士,副教授,博士生導(dǎo)師,研究方向?yàn)殡姍C(jī)設(shè)計(jì)及其控制;
黃彰浩(1997—),男,博士研究生,研究方向?yàn)槿嵝韵到y(tǒng)伺服驅(qū)動(dòng)、機(jī)器人關(guān)節(jié)驅(qū)控技術(shù);
沈建新(1969—),男,博士,教授,博士生導(dǎo)師,研究方向?yàn)殡姍C(jī)拓?fù)渑c驅(qū)動(dòng)控制。
通信作者:王云沖