摘"要:函數(shù)是數(shù)學(xué)的主要研究對(duì)象,而奇偶性是函數(shù)的一種重要特性,通過研究函數(shù)的奇偶性可以加強(qiáng)學(xué)生對(duì)函數(shù)概念與性質(zhì)的理解,培養(yǎng)數(shù)學(xué)思維和創(chuàng)新能力.“復(fù)變函數(shù)論”是理工科本科生必修的數(shù)學(xué)基礎(chǔ)課程,在自然科學(xué)的各個(gè)領(lǐng)域都有著廣泛的應(yīng)用.現(xiàn)有文獻(xiàn)主要集中于研究實(shí)變量函數(shù)的奇偶性及其應(yīng)用,對(duì)復(fù)變函數(shù)的奇偶性討論較少.本文利用函數(shù)的奇偶性,系統(tǒng)研究復(fù)變函數(shù)中的積分、求導(dǎo)及留數(shù)等相關(guān)問題,以指導(dǎo)大學(xué)數(shù)學(xué)教學(xué),改進(jìn)教師的教學(xué)方法,提高學(xué)生的思維水平和計(jì)算效率,并體現(xiàn)數(shù)學(xué)之美.
關(guān)鍵詞:復(fù)變函數(shù);奇偶性;復(fù)積分;解析函數(shù);留數(shù)
Abstract:Function"is"the"main"research"object"of"mathematics"and"parity"is"an"important"characteristic"of"function.By"studying"the"parity,students"can"strengthen"their"understanding"of"the"concept"and"property"of"function,and"cultivate"mathematical"thinking"andnbsp;innovation"ability.Complex"function"theory,as"a"compulsory"mathematical"basic"course"for"undergraduate"students"of"science"and"engineering,has"been"widely"used"in"various"fields"of"natural"science.The"existing"literature"mainly"focus"on"the"research"of"real"variable"function"and"there"is"little"discussion"on"the"parity"of"complex"variable"function.This"paper"uses"the"parity"of"function"to"study"the"problems"of"integration,derivation"and"residue"in"complex"variable"function"systematically,so"as"to"guide"college"mathematical"education,improve"teachers’"teaching"methods,promote"students’"thinking"level"and"computing"ability,and"reflect"the"beauty"of"mathematics.
Keywords:Complex"function;Parity;Complex"integral;Analytic"function;Residue
復(fù)變函數(shù)是數(shù)學(xué)的一個(gè)重要分支,“復(fù)變函數(shù)論”作為一種強(qiáng)有力的工具,被廣泛應(yīng)用于自然科學(xué)的眾多領(lǐng)域,如物理場(chǎng)論、彈性理論、流體力學(xué)、自動(dòng)控制論、醫(yī)學(xué)成像與診斷等.函數(shù)是“復(fù)變函數(shù)論”的主要研究對(duì)象,而奇偶性是函數(shù)的基本性質(zhì)之一,若能靈活使用奇偶函數(shù)的各項(xiàng)性質(zhì),可以使很多問題變得更為簡(jiǎn)單,可以進(jìn)一步提高學(xué)生的計(jì)算能力,體現(xiàn)出了數(shù)學(xué)的對(duì)稱之美.
1"函數(shù)奇偶性的定義與性質(zhì)
定義1:設(shè)函數(shù)f(z)的定義域D關(guān)于原點(diǎn)對(duì)稱,若z∈D,恒有f(-z)=f(z),則稱f(z)為偶函數(shù);若z∈D,恒有f(-z)=-f(z),則稱f(z)為奇函數(shù).
例如:sinz是奇函數(shù),cosz是偶函數(shù).
性質(zhì)1:設(shè)z=x+iy,f(z)=u(x,y)+iv(x,y),若f(z)為偶函數(shù),則有u(x,y)=u(-x,-y),v(x,y)=v(-x,-y);若f(z)奇函數(shù),則有u(-x,-y)=-u(x,y),v(-x,-y)=-v(x,y).
證:若f(z)為偶函數(shù),f(-z)=u(-x,-y)+iv(-x,-y),由f(-z)=f(z)可得,u(-x,-y)=u(x,y),v(-x,-y)=v(x,y).類似可證明奇函數(shù)的性質(zhì).
定義2:設(shè)函數(shù)f(z)的定義域D關(guān)于虛軸對(duì)稱,若z∈D,恒有f(-z)=f(z),則稱f(z)為關(guān)于虛軸的偶函數(shù);若z∈D,恒有f(-z)=-f(z),則稱f(z)為關(guān)于虛軸的奇函數(shù).
性質(zhì)2:設(shè)z=x+iy,f(z)=u(x,y)+iv(x,y),若f(z)為關(guān)于虛軸的偶函數(shù),則有u(-x,y)=u(x,y),v(-x,y)=v(x,y);若f(z)為關(guān)于虛軸的奇函數(shù),則有u(-x,y)=-u(x,y),v(-x,y)=-v(x,y).
證:若f(z)為關(guān)于虛軸的偶函數(shù),f(-z)=u(-x,y)+iv(-x,y),由f(-z)=f(z)可得,u(-x,y)=u(x,y),v(-x,y)=v(x,y).
類似可證明關(guān)于虛軸的奇函數(shù)的性質(zhì).
定義3:設(shè)函數(shù)f(z)的定義域D關(guān)于實(shí)軸對(duì)稱,若z∈D,恒有f(z)=f(z),則稱f(z)為關(guān)于實(shí)軸的偶函數(shù);若z∈D,恒有f(z)=-f(z),則稱f(z)為關(guān)于實(shí)軸的奇函數(shù).
性質(zhì)3:設(shè)z=x+iy,f(z)=u(x,y)+iv(x,y),若f(z)為關(guān)于實(shí)軸的偶函數(shù),則有u(x,-y)=u(x,y),v(x,-y)=v(x,y);若f(z)為關(guān)于實(shí)軸的奇函數(shù),則有u(x,-y)=-u(x,y),v(x,-y)=-v(x,y).
證:若f(z)為關(guān)于實(shí)軸的偶函數(shù),f(z)=u(x,-y)+iv(x,-y),由f(z)=f(z)可得,u(x,-y)=u(x,y),v(x,-y)=v(x,y).類似可證明關(guān)于實(shí)軸的奇函數(shù)的性質(zhì).
定義4:設(shè)有向曲線C分為C1和C2兩段,若沿C1行進(jìn)至C2,曲線方向不發(fā)生變化,則稱C1和C2同向,反之則為異向.
2"奇偶函數(shù)的積分
復(fù)變函數(shù)積分計(jì)算是復(fù)變函數(shù)教學(xué)中的重要內(nèi)容,研究奇偶性在積分中的作用規(guī)律能進(jìn)一步提升學(xué)生的思維水平與計(jì)算能力,指導(dǎo)教師改進(jìn)復(fù)積分的教學(xué)方法.
2.1"定理1[1]
設(shè)函數(shù)f(z)在有向光滑曲線C上連續(xù),C由C1和C2兩部分構(gòu)成.
(1)若C1與C2為形狀關(guān)于原點(diǎn)對(duì)稱的同向曲線,則有∫Cf(z)dz=0,當(dāng)f為偶函數(shù);
2∫C1f(z)dz,當(dāng)f為奇函數(shù).
(2)若C1與C2為形狀關(guān)于原點(diǎn)對(duì)稱的異向曲線,則有∫Cf(z)dz=2∫C1f(z)dz,當(dāng)f為偶函數(shù);
0,當(dāng)f為奇函數(shù).
證:若f為偶函數(shù),由性質(zhì)1,u(-x,-y)=u(x,y),v(-x,-y)=v(x,y).
由定理1[1]知,∫Cu(x,y)dx=∫Cu(x,y)dy=∫Cv(x,y)dx=∫Cv(x,y)dy=0,故∫Cf(z)dz=∫Cu(x,y)dx-v(x,y)dy+i∫Cv(x,y)dx+u(x,y)dy=0.
若f為奇函數(shù),由性質(zhì)1,u(-x,-y)=-u(x,y),v(-x,-y)=-v(x,y).
由定理1[1]知,∫Cu(x,y)dx=2∫C1u(x,y)dx,∫Cv(x,y)dy=2∫C1v(x,y)dy,∫Cv(x,y)dx=2∫C1v(x,y)dx,∫Cu(x,y)dy=2∫C1u(x,y)dy.
故∫Cf(z)dz=∫Cu(x,y)dx-v(x,y)dy+i∫Cv(x,y)dx+u(x,y)dy=2∫C1f(z)dz.
類似可證明(2)成立.
2.2定理2[2]
設(shè)函數(shù)f(z)在有向光滑曲線C上連續(xù),C由C1和C2兩部分構(gòu)成.
(1)若C1與C2為形狀關(guān)于虛軸對(duì)稱的同向曲線,則有:
當(dāng)f為關(guān)于虛軸的奇函數(shù),∫Cf(z)dz=2∫C1(u+iv)dx.
當(dāng)f為關(guān)于虛軸的偶函數(shù),∫Cf(z)dz=2∫C1(-v+iu)dy.
若C1與C2為形狀關(guān)于虛軸對(duì)稱的異向曲線,則結(jié)論相反.
(2)若C1與C2為形狀關(guān)于實(shí)軸對(duì)稱的同向曲線,則有:
當(dāng)f為關(guān)于實(shí)軸的奇函數(shù),∫Cf(z)dz=2∫C1(-v+iu)dy.
當(dāng)f為關(guān)于實(shí)軸的偶函數(shù),∫Cf(z)dz=2∫C1(u+iv)dx.
若C1與C2為形狀關(guān)于實(shí)軸對(duì)稱的異向曲線,則結(jié)論相反.
證:設(shè)C1與C2為形狀關(guān)于虛軸對(duì)稱的同向曲線.若f為關(guān)于虛軸的偶函數(shù),由性質(zhì)2,u(-x,y)=u(x,y),v(-x,y)=v(x,y).
由參考文獻(xiàn)[3]中的定理6知,
∫Cu(x,y)dx=∫Cv(x,y)dx=0,
∫Cu(x,y)dy=2∫C1u(x,y)dy,
∫Cv(x,y)dy=2∫C1v(x,y)dy.
故∫Cf(z)dz=∫Cu(x,y)dx-v(x,y)dy+i∫Cv(x,y)dx+u(x,y)dy=2∫C1(-v+iu)dy.
類似可證明其他結(jié)論也成立.
2.3"應(yīng)用舉例
例:沿曲線正向計(jì)算下列積分.
(1)∫|z|=3zsinzdz;(2)∫|z|=3z12(z2+1)2(z4+2)3dz.
解:該圓周|z|=3可看做由關(guān)于原點(diǎn)對(duì)稱的兩條同向曲線構(gòu)成,且被積函數(shù)為偶函數(shù),由定理1積分值均為0.
3"奇偶函數(shù)的導(dǎo)數(shù)
解析函數(shù)是復(fù)變函數(shù)的主要研究對(duì)象,它是一類特殊的可導(dǎo)函數(shù),關(guān)于解析函數(shù)性質(zhì)的研究也是整個(gè)復(fù)變函數(shù)研究的核心問題.
3.1"定理3
設(shè)函數(shù)f(z)在關(guān)于原點(diǎn)對(duì)稱的區(qū)域D內(nèi)解析,若f(z)為奇函數(shù),則有:
f(n)(z)為D內(nèi)的偶函數(shù),n為奇數(shù);
為D內(nèi)的奇函數(shù),n為偶數(shù).
若f(z)為偶函數(shù),則結(jié)論相反.
證:設(shè)f(z)為奇函數(shù),即f(-z)=-f(z),兩邊同時(shí)求導(dǎo)后有-f′(-z)=-f′(z),故f′(z)為偶函數(shù),由數(shù)學(xué)歸納法和解析函數(shù)的無窮可微性可得結(jié)論.類似可證明偶函數(shù)的結(jié)論.
3.2"定理4
設(shè)函數(shù)f(z)在零點(diǎn)的鄰域|z|<δ內(nèi)解析,若f(z)為奇函數(shù),則函數(shù)在該鄰域內(nèi)的泰勒級(jí)數(shù)僅含奇數(shù)次冪項(xiàng);若為偶函數(shù),則含偶數(shù)次冪項(xiàng).
證:由泰勒展開定理,f(z)=∑+∞n=0cnzn,|z|<δ,其中cn=f(n)(0)n!.
若f為奇函數(shù),n為偶數(shù)時(shí),由定理3知f(n)(z)也為奇函數(shù),故f(n)(0)=0,即cn≡0,級(jí)數(shù)中僅含z的奇數(shù)次冪項(xiàng).
類似可證明偶函數(shù)的結(jié)論.
3.3"定理5
設(shè)不恒為零的函數(shù)f(z)在零點(diǎn)的鄰域|z|<δ內(nèi)解析,且0為f(z)的m級(jí)零點(diǎn).若f(z)為奇函數(shù),則m為奇數(shù);若f(z)為偶函數(shù),則m為偶數(shù).
證:由已知0是f(z)的m級(jí)零點(diǎn),則有f(z)=zmg(z),|z|<δ,其中g(shù)(z)在|z|<δ內(nèi)解析且g(0)≠0.若f為奇函數(shù),g(z)必為偶函數(shù),故m為奇數(shù).類似可證明偶函數(shù)的結(jié)論.
4"奇偶函數(shù)的留數(shù)
留數(shù)又稱殘數(shù),是“復(fù)變函數(shù)論”中一個(gè)非常重要的概念.留數(shù)計(jì)算一般是先將函數(shù)在包含孤立奇點(diǎn)的圓環(huán)域內(nèi)展開為洛朗級(jí)數(shù),再尋找負(fù)一次冪項(xiàng)的系數(shù)(有限孤立奇點(diǎn)),這種方法雖然是最本質(zhì)的方法,但涉及函數(shù)級(jí)數(shù)展開往往較為麻煩,如果能結(jié)合函數(shù)的奇偶性進(jìn)行分析,求留數(shù)的過程會(huì)更為方便.
4.1"定理6[4]
設(shè)f(z)的定義域D關(guān)于原點(diǎn)對(duì)稱,a是f(z)的有限孤立奇點(diǎn),若f(z)是偶函數(shù),則Res[f(z),a]=-Res[f(z),-a].若f(z)是奇函數(shù),則Res[f(z),a]=Res[f(z),-a].
證:由洛朗定理,f(z)=∑+∞n=-∞cn(z-a)n,0<|z-a|<δ.
則f(-z)=∑+∞n=-∞cn(-z-a)n=∑+∞n=-∞(-1)ncn(z+a)n,0<|z+a|<δ.
而-f(-z)=-∑+∞n=-∞cn(-z-a)n=∑+∞n=-∞(-1)n+1cn(z+a)n,0<|z+a|<δ.
若f(z)為偶函數(shù),f(z)=f(-z),則有Res[f(z),a]=c-1=-Res[f(-z),-a]=-Res[f(z),-a].
若f(z)為奇函數(shù),f(z)=-f(-z),則有Res[f(z),a]=c-1=Res[-f(-z),-a]=Res[f(z),-a].
推論:設(shè)0是f(z)的孤立奇點(diǎn),若f(z)是偶函數(shù),則Res[f(z),0]=0.
證:由定理6,Res[f(z),0]=-Res[f(z),0],故Res[f(z),0]=0.
4.2"定理7
設(shè)∞是f(z)的孤立奇點(diǎn),若f(z)是偶函數(shù),則Res[f(z),∞]=0.
證:由無窮遠(yuǎn)點(diǎn)留數(shù)的計(jì)算規(guī)則,Res[f(z),∞]=-Resf1t1t2,0.
若f(z)為偶函數(shù),則f1t1t2為變量t的偶函數(shù).再由推論1可得,Res[f(z),∞]=0.
4.3"應(yīng)用舉例
例1:求下列函數(shù)在零點(diǎn)的留數(shù).
(1)sinz-zz4sinz;(2)z2(1-ez2)3.
解:0為孤立奇點(diǎn),且函數(shù)為偶函數(shù),由推論1留數(shù)均為0.
例2:求下列函數(shù)在無窮遠(yuǎn)點(diǎn)的留數(shù).
(1)e1z2;(2)z21+z4.
解:∞為孤立奇點(diǎn),且函數(shù)為偶函數(shù),由定理7留數(shù)均為0.
4.4"定理8
設(shè)f(z)=P(z)Q(z)為奇的有理分式,其中P(z)=c0zm+c1zm-1+…+cm(c0≠0)與Q(z)=b0zn+b1zn-1+…+bn(b0≠0)為互質(zhì)多項(xiàng)式,且符合條件:
(1)n-m≥2;(2)在實(shí)軸上Q(z)≠0.則有
∑Imak>0Res[f(z),ak]=0,其中ak為f(z)所有位于上半平面的有限孤立奇點(diǎn).
證:根據(jù)已知條件和留數(shù)定理在實(shí)積分上的應(yīng)用可知,2πi∑Imak>0Res[f(z),ak]=∫+∞-∞f(x)dx,由于f(z)為奇函數(shù),f(x)也為奇函數(shù),故∑Imak>0Res[f(z),ak]=0.
結(jié)語
通過本文的研究可以發(fā)現(xiàn),奇偶復(fù)變函數(shù)在積分、導(dǎo)數(shù)和留數(shù)等方面都具有特殊的性質(zhì).這些性質(zhì)與實(shí)變量函數(shù)相比,既有聯(lián)系也有明顯的區(qū)別.若能靈活掌握相關(guān)特性,可以深化學(xué)生對(duì)復(fù)變函數(shù)奇偶性的認(rèn)識(shí)和理解,提高學(xué)生的解題能力,進(jìn)一步促進(jìn)“復(fù)變函數(shù)論”的教學(xué).
參考文獻(xiàn):
[1]陳永衡,王有德,徐洪香.第二類曲線積分、復(fù)變函數(shù)積分的一個(gè)性質(zhì)[J].遼寧工學(xué)院學(xué)報(bào),2003(02):6970.
[2]吳君,劉易成.復(fù)積分的對(duì)比教學(xué)初探[J].湘南學(xué)院學(xué)報(bào),2010,31(05):4446.
[3]孟澤紅.對(duì)稱性在求解第一型和第二型曲線積分上的區(qū)別[J].科技創(chuàng)新導(dǎo)報(bào),2018,15(14):242243.
[4]于亞萍,李杰,鄭亞勤.一類函數(shù)留數(shù)計(jì)算的兩個(gè)簡(jiǎn)化方法[J].牡丹江教育學(xué)院學(xué)報(bào),2006(06):128130.
基金項(xiàng)目:西南科技大學(xué)龍山人才項(xiàng)目(18LZX655)
作者簡(jiǎn)介:萬莉莉(1982—"),女,漢族,四川瀘州人,博士,副教授,從事非線性分析研究。