
【中圖分類號】R966 【文獻標志碼】A 【文章編號】1007-8517(2025)11-0076-07
DOI:10.3969/j. issn.1007-8517.2025.11. zgmzmjyyzz202511016
Research Progress of Luteolin in the Treatment of Diabetic Nephropathy
YU Xiaoze1HUANG Rong1WANG Xuewei2SHI Yunke2MA Yiming2 ZHANG Ling1LUO Min1 CAI Hongyan2 LI Yan2 YANG Weimin1 * 1.School of Pharmacy,Kunming Medical University and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology,Kunming 65050o,China; 2.The First Afiliated Hospital of Kunming Medical University,Kunming 65OoOo,China
Abstract:Diabetic nephropathyisaserious threatto human health,primarilycharacterizedbyabnormal renalhemodynamics, includinghighglomerularfltratioandpefusionstates.Asthconditionprogresses,teaccumulationofadvancedglycationedproductsgraduallydestroysrenalfiltrationfunction,leadingtoincreasedurinaryalbuminandrenalfailure,amongothersevereconsequences.Thepathogenesisofdiabeticnephropathyiscomplexandinvolvesdisordersinglucosemetabolism,vascular/blodflow,secretionof inflammatorycytokines,xidativestress,andmore.Luteolinisfavooidompoundextractedfromthespecialyplants, suchaslampflowerfoundinYunnanIttargetsthemolecularmechanismsofdiabeticnephropathyndexertsitstherapeuticeffects througharious targetpathways.Luteoliplaysacrucialoleinimprovingmicrociclation,protectingthecardiovascularsystemnti -inflammation,andantioxidantactions.Thisarticleaimstoreviewthemolecularmechanismsofdiabeticnephropathyandthere search progress on the molecular mechanisms of luteolin in treating diabetic nephropathy.
Key words:Diabetic Nephropathy;Luteolin;Target Points;Signal Pathway
糖尿病(diabetesmellitus,DM)是一類以高血糖為主要病理特征的代謝疾病。長期的高血糖水平會導致糖尿病微血管并發癥的發生包括糖尿病腎臟疾病(diabeticnephropathy,DN)、糖尿病周圍神經病變、糖尿病足等[1]。DN是DM最常見的微血管并發癥之一,約 40% 的DM可進展為DN,導致蛋白尿和腎小球病變,最終發展為終末期腎病和慢性腎臟疾病[2]。其發病機制非常復雜,目前尚不完全清楚,然而嚴格控制血糖和血壓的標準療法已被證明不能阻正DN進展為終末期腎病,因此急需找到新的方法預防DN的發生發展[3] 。
云南特色藥用植物燈盞花富含多種黃酮類化合物,其中活性較強的木犀草素(luteolin,LTD)具有豐富的藥理作用和顯著的藥用價值,對重大疾病有一定的治療作用,對人類健康具有深遠的意義[4]。LTD作為炎癥性疾病的有效調節劑,通過抑制促炎介質釋放,能顯著改善各種炎癥狀態并影響其起始途徑,對膿毒癥,潰瘍性結腸炎和狼瘡性腎炎等有很好的治療作用[5-7]。LTD 在抗氧化,減少脂肪生成及異位脂質沉積和調節糖脂代謝等方面也有較好的療效[8-9]。除此之外,LTD 對各種癌癥如肺癌、黑素瘤、乳腺癌等也起到減輕癥狀并延緩進展的作用[10]。因此,探索LTD對人類疾病的治療作用及其相關機制具有重大意義。在本篇綜述中,筆者將重點闡述DN的分子機制,并討論黃酮類化合物LTD如何預防或減輕 DN 。
1 DN機制概述
DN的病理機制十分復雜,涉及糖代謝紊亂、血管微循環受阻、免疫炎癥及氧化應激等多種因素,其中持續的高葡萄糖水平在DN的發病機制中通過不同途徑起核心作用。
1. 1 糖代謝失調
1.1.1 多元醇途徑 多元醇途徑由醛糖還原酶(al-dosereductase,AR)和山梨醇脫氫酶(sorbitoldehy-drogenase,SDH)催化的兩個反應組成,是DM及其并發癥發生發展的重要環節。過量的葡萄糖通過多元醇途徑在還原型輔酶II(nicotinamideadeninedinucle-otidephosphate,NADPH)的催化下生成果糖(nico-tinamideadeninedinucleotide, NAD+ )和還原型輔酶I(nicotinamideadeninedinucleotide,NADH),不僅導致細胞內的谷胱甘肽濃度減少,細胞內抗氧化能力減弱,還會破環NAD + 和NADH的氧化還原平衡,導致NADH的過量生成,使活性氧(reactiveoxygenspecies,ROS)產生增加,引起氧化應激,促進DN的發生發展[3I]。因此通過抑制 AR 和 SDH 在多元醇通路中的作用,維持氧化還原平衡,可以減輕DM及其并發癥。
1.1.2晚期糖基化終末產物過度積累晚期糖基化終末產物(advancedglycationend products,AGEs)是異質交聯的糖衍生蛋白,在腎小球基底膜、系膜細胞、內皮細胞和足細胞中積累,導致腎臟功能和結構的改變,并引發DN典型的形態學改變[12]。在高血糖條件下 AGEs 與其受體結合后,能激活絲裂原活化蛋白激酶(mitogen-activatedproteinkinase,MAPK)和核轉錄因子- κB (nu-clearfactor- κB , NF-κB )級聯信號轉導,導致多種炎癥和促纖維化因子產生參與血管損傷機制;還能激活蛋白激酶C系統(proteinkinaseCsystem,PKCsystem)和/或產生ROS以及激活Janus激酶2/信號轉導和轉錄激活因子3(januskinase2/signal transducer and activator of transcription 3,JAK2/STAT3)和 c-Jun 氨基末端激酶( c-JunN -terminalkinase,JNK)等信號通路,促進各種炎癥因子和促纖維化因子的釋放,上調氧化應激引發大量炎癥細胞介導的病理生理反應[13-14]。因此干預AGEs信號通路,可減緩DN的進展。
1.1.36-磷酸果糖酰基轉移酶活性上調6-磷酸果糖酰基轉移酶(glutamine:fructose-6-phos-phateaminotransferase,GFAT)是氨基己糖生物合成途徑中的第一個限速酶,在DN機制中發揮重要作用[15]。GFAT能催化果糖-6-磷酸(fructose-6-phosphate,F-6-P),使其轉化為尿苷-5-二磷酸-N-乙酰葡萄糖胺(uridine-5’-diphos-phate-N-acetylglucosamine,UDP-GlcNAc),加快O-連接的N-乙酰氨基葡萄糖轉移酶(O-Gl-cNActransferase,OGT)的產生,降低胰島素信號傳導并參與肌肉和脂肪細胞的胰島素抵抗[16]。因此,GFAT活性上調導致的UDP-GlcNAc產生增加是導致胰島素抵抗和DN 的原因之一。
1.1.4AMPK通路的抑制單磷酸腺苷活化蛋白激酶(adenosine monophosphate-activated proteinkinase,AMPK)作為機體能量代謝平衡的關鍵調控分子,可通過磷酸化修飾、亞細胞定位等方式發揮抗炎癥、清除膽固醇等功能,防治肥胖所致胰島素抵抗[17-18]。高血糖能降低腎臟中 AMPK 的活性、抑制AMPK信號通路的激活導致的細胞自噬過程,影響腎臟蛋白質合成、糖原代謝和線粒體功能等,導致 DN進一步發展[19-20]。鈉-葡萄糖協同轉運體2(sodium-dependent glucose trans-porters,SGLT2)抑制劑通過激活AMPK信號通路一方面能誘導自噬改善細胞應激和腎小球和腎小管損傷,另一方面也有助于其在2型糖尿病中限制腎鈉轉運和保護腎臟[21]。總之激活AMPK信號通路能減輕炎癥反應、改善線粒體的功能、抑制ROS的生成以及減少微血管的損傷等。
1.2 血管/血流異常
1.2.1血管內皮功能障礙血管內皮作為血管腔與血管壁之間的結構屏障,能夠分泌多種生長因子和細胞因子,從而調節血管的功能。血管內皮損傷的根本原因是一氧化氮(nitricoxide,NO)生成不足,生物利用度下降,繼而引起氧化應激增強、炎癥因子釋放增多、血管舒縮功能紊亂、內皮損傷修復障礙等[22-23]。長期高糖水平既能導致內皮細胞受損釋放更多內皮素-1,進一步抑制內皮一氧化氮合酶的活性,減少NO的產生;又能激活PKC通路上調多種生長因子的表達及轉化,促進細胞外基質(extracellularmatrix,ECM)積聚和ROS 的產生,加快DN 的進展[24]。此外,多種細胞生長因子和黏附因子對維持血管完整性和內皮細胞屏障功能以及調節體內平衡和病理狀態(癌癥、動脈粥樣硬化、DN等)發揮重要作用[25] 。
1.2.2腎素-血管緊張素系統腎素-血管緊張素系統(renin-angiotensinsystem,RAS)對DN的進展具有重要的調控作用。血管緊張素ⅡI(an-giotensinII,AngII)是RAS的主要參與者,既能通過激活JAK2/STAT3通路,導致小鼠足細胞的凋亡、線粒體功能障礙、氧化應激和炎癥反應等;也能促進小鼠體內生長因子和細胞因子的合成和分泌,導致腎臟病理改變,同時激活的白細胞介素6(interleukin6,IL-6)能進一步刺激JAK2/STAT通路,導致 DN的發生[26-27]。而血管緊張素轉換酶2 (angiotensin converting enzyme 2,ACE2)作為RAS的負調節因子能抑制RAS的活化,從而通過抑制JAK2/STAT3途徑來抑制細胞凋亡和炎癥反應,減緩DN的進展[28]
1.3免疫炎癥因子及氧化應激
1.3.1免疫炎癥因子在DN的發生和發展過程中,免疫炎癥因子扮演了關鍵角色。這些炎癥因子包括Toll 樣受體(toll-likereceptors,TLR)、核昔酸結合寡聚化結構域樣受體含3的吡啶結構域蛋白(nucleotide-binding oligomerization domainlike receptor pyrin domain containing 3,NLRP3)、趨化因子以及補體系統[29]。有研究[30]表明TLR家族中的TLR2和TLR4在DN小鼠的腎小球和腎小管細胞中顯著表達,并在誘導腎臟炎癥和纖維化中起重要作用。TLR信號通過骨髓分化因子88(my-eloiddifferentiationfactor88,MyD88)途徑激活NF-κB 和MAPKs通路,從而觸發下游多種基因的激活,導致炎癥反應趨化因子和促炎細胞因子合成增加,促進了DN 的發生發展[31]。NLRP3 炎癥復合體是一類由感知蛋白、凋亡斑蛋白、效應蛋白構成的復合體[32]。在DN患者和DN小鼠模型中,通過 K+ 通道模型,溶酶體損傷模型和ROS模型激活NLRP3,形成NLRP3炎癥復合體,誘導炎癥因子白細胞介素 1β (interleukin -1β ,IL-1β)和白細胞介素18(interleukin-18,IL-18)的產生進而引發炎癥級聯反應,促進DN 的進展[33]。因此,抑制TLR信號的激活和NLRP3炎癥復合體的形成,能減輕腎足細胞和腎小球的損傷,對腎臟起到保護作用[34]
1.3.2氧化應激氧化應激是指抗氧化系統和ROS之間的平衡受到破壞,導致細胞或組織中的ROS過量產生和積累以及抗氧化系統失衡[35]ROS包括多種自由基,如 02- 、過氧自由基、烷氧基自由基和羥基自由基,以及非自由基如單線態分子氧、過氧化氫、有機氫過氧化物、次氯酸和臭氧,這些活性物質在細胞內累積可能導致多種疾病的發生發展[36]。高血糖是促使ROS產生過量導致氧化應激的主要原因。高血糖誘導葡萄糖通多元醇途徑代謝,使ROS的產生增加,機體積累過量的ROS,打開線粒體通透性轉換孔,細胞內Ca2+ 濃度增加,一系列凋亡酶和幾種炎癥介質被激活,導致腎小球足細胞損傷[37]。除此之外 ROS還能通過激活MAPK通路,增加轉化生長因子-β(transforming growth factor -β ,TGF-β)的合成,激活磷脂酰肌醇3-激酶和蛋白激酶B(Phosphati-dylinositol 3 - kinase and protein kinase B, PI3K Akt)信號傳導途徑,加速ECM的增殖,促進腎臟纖維化的發生發展;同時也能激活 NF-κB 和 NL-RP3炎癥復合體,最終導致DN的發生發展[38]
2LTD拮抗DN的分子機制
云南特色藥用植物燈盞花中的黃酮類化合物是一類重要的天然產物,具有保護心血管、抗炎、抗氧化、調節血糖和防治DN并發癥的作用[39]LTD是燈盞花中一種活性很強的黃酮類化合物,具有調節糖脂代謝、改善血管內皮功能、抗炎、抗氧化等特性,包括抑制IL-6、 IL-1β 和腫瘤壞死因子-α(tumornecrosisfactor -α , TNF-α )等炎癥介質的釋放和調節 NF-κB 、PI3K/Akt和JAK-STAT通路等[40]。
2.1LTD對糖脂代謝的作用Wang等[41]通過分析LTD的藥代動力學特性發現,其攝入可以通過系統循環作用于機體的下丘腦、肝臟、脂肪組織、腎臟和其他器官,從而改善脂質和葡萄糖代謝,有利于改善糖脂代謝紊亂(glucosemetabolismdis-orders,GLMD),特別是胰島素抵抗,DM和肥胖。Filex 等[42]通過計算機模擬篩選發現,LTD對AR具有更強的結合親和力并能抑制其在多元醇途徑中的作用,同時延遲微血管并發癥的發生。Qin等[43]通過光譜和分子相互作用發現,LTD對AGEs有較強的抑制作用,能減少AGEs的積聚,從而減緩DN的進展。Wang等[44]發現LTD能激活AMPK通路,調節AMPK和人叉頭框蛋白O1的表達水平,減輕腎臟葡萄糖代謝障礙和血脂異常,從而減輕腎損傷。Park 等[45]發現LTD 通過Akt/糖原合成酶激酶 3β (glycogen synthase kinase -3β ,GSK-3β )/微管相關蛋白(microtubule-associatedproteintau,Tau)信號通路,增強了海馬區的胰島素信號傳遞,促進葡萄糖的快速攝取,抑制肝臟產生和釋放葡萄糖的過程,從而調節血糖。一項用LTD提取物治療肥胖小鼠的研究4表明,通過抑制糖異生和脂肪生成,改善了肝臟脂肪變性,對受損肝臟的葡萄糖生成產生了積極影響。LTD對高脂飲食與鏈脲佐菌素誘導的DM大鼠具有顯著的調節作用,能夠抑制丙二醛的升高,并提高超氧化物歧化酶、過氧化氫酶和谷胱甘肽等抗氧化劑的活性,增強過氧化物酶體增殖物激活受體 ∝ 的表達,降低膽固醇酰基轉移酶-2與甾醇調節元件結合蛋白-2的表達,從而減少血脂異常,改善GLMD[47]
2.2LTD 對血管內皮的作用內皮功能缺陷是DM并發癥的重要病理機制,因此改善內皮功能障礙對治療DN起到關鍵作用[48]。Jia等[49]發現LTD能有效抑制 TNF-α 誘導的趨化因子單核細胞趨化蛋白-1、黏附分子細胞間黏附分子-1和血管細胞黏附分子-1的表達,可防止主動脈內膜層內皮細胞的萌發,并保留彈性纖維的微妙組織結構,能顯著降低 TNF-α 刺激的單核細胞與主動脈內皮細胞的黏附,對 TNF-α 誘導的血管內皮功能障礙具有保護作用。 Su 等[50]發現LTD能抑制RAS系統,導致 AngII 的表達下調,抑制對氧化還原敏感的信號分子的活化,進而降低血管平滑肌細胞的增殖細胞核抗原表達并調節細胞生長,從而抑制血管平滑肌細胞增殖和遷移;同時減少AngII誘導的ROS過度生成和金屬蛋白酶的激活,進而改善血管重塑。Assungao等[5通過使用不同濃度的LTD對大鼠靜脈內皮細胞進行培養,觀察到在LTD 培養10分鐘后,細胞內的NO水平顯著升高,同時ROS的產生量相應減少。這一發現表明,LTD對血管內皮具有多方面的保護作用。它能夠有效地減少ROS的產生,提高靜脈內皮細胞中NO的利用率,并誘導3-硝基酪氨酸殘基的減少。此外,LTD還能提升內皮前列環素的生物利用度,從而有助于維持血管內皮細胞的穩態。除此之外,LTD不僅能降低DM大鼠的體重、肥胖指數和膽固醇水平,而且通過在血管周圍脂肪組織中積累,能抑制血管氧化應激和AGEs的積累,改善血管內皮功能[52]。LTD 還可以抑制促炎細胞因子表達、擴張血管,減輕DM誘導的內皮依賴性松弛損傷,并防止與肥胖相關的全身代謝和血管改變[53]
2.3LTD對炎癥反應及氧化應激的作用高水平的葡萄糖和其他代謝物產生并釋放過量的ROS及多種炎癥因子和細胞因子,導致DN的腎功能惡化進一步發展為終末期腎病[54]。Zhang 等[55]在對 DN小鼠進行為期12周的LTD灌胃給藥后發現,LTD能夠通過STAT3通路來抑制IL-1β、IL-6、TNF-α 等炎癥因子的釋放和氧化應激反應,同時LTD還能改善DN小鼠的腎纖維化狀況,進一步改善DN小鼠模型中的腎小球硬化和間質纖維化,從而延緩DN的進展。 Yu 等[56]發現,LTD能緩解高糖誘導的小鼠腎足細胞的損傷并抑制NLRP3炎性小體復合物的形成及 IL-1β 分泌,同時通過阻止ROS的產生來抑制NLRP3炎性體的活化減輕腎損傷。已有研究發現,LTD不僅能誘導AKT磷酸化從而抑制 NF-κBp65 核易位還能阻斷MAPK炎癥通路,從而下調IL-6,I-8等炎癥因子,減輕炎癥反應[57]。Chen等[58]發現LTD能顯著降低DM大鼠的血糖和尿素氮水平,增加血清鈉和氯水平,同時能有效抑制腎臟糖蛋白沉積和膠原纖維的生成,抑制 NF-κB 介導的促炎因子產生,通過抑制PI3K/Akt信號通路的激活下調下游凋亡相關蛋白半胱天冬酶3的表達,并增強核因子E2相關因子的依賴性抗氧化能力。LTD也能通過AMPK/mTOR途徑調節自噬相關基因改善大鼠的氧化應激和細胞凋亡,減輕腎損傷[59]。
3討論與展望
DN的病理機制頗為復雜,涉及多條途徑和多個靶點的相互作用。LTD能夠通過AMPK/mTOR通路、PI3K/Akt通路、STAT3通路和MAPK通路等改善GLMD,調節氧化應激和炎癥因子的釋放,保護腎臟血管內皮,對DN的進展產生一定的拮抗作用。然而,現階段的治療機制仍有一定的局限性。首先,雖然云南特有植物燈盞花中的LTD活性較高,但其含量較低,因此可以考慮對其進行結構修飾以獲得活性更強、產量更高、成藥性更佳、溶解性更好的LTD衍生物;其次,DN的病理機制尚未完全明確,不僅涉及糖脂代謝、血管/血液異常,還涉及氧化應激、免疫炎癥等多種因素,因此探索其全面的靶點通路較為困難,可以考慮將多組學中的轉錄組學、蛋白組學、代謝組學與網絡藥理學相結合,并通過實驗驗證和數據分析來發現新的靶點通路;最后,盡管現有文獻發現LTD的拮抗機制與多條通路有關,但大多數研究僅停留在疾病表象的蛋白表達層面,未能深人探究其拮抗機制以及LTD與之結合的靶點蛋白,明確其具體作用方式,因此仍需進一步研究,為民族用藥的后續發展積累更多力量。
參考文獻
[1] MCELWAIN C,MCCARTHY F,MCCARTHY C. Gestational diabetes mellitus and maternal immune dysregulation:what we know so far[J].IntJMol Sci,2021,22 (8):42-61.
[2]SAMSU N,BELLINI MI. Diabetic Nephropathy:Challenges in Pathogenesis,Diagnosis,and Treatment [J]. BioMed ResInt,2021,2021[2314-6141(Electronic)]:1-17.
[3] KOPEL J, PENA - HERNANDEZ C,NUGENT K. Evolving spectrum of diabetic nephropathy [J]. World JDiabetes,2019,10(5):269-279.
[4]LVJJ,ZHOU D M,WANG Y,et al.Effects of luteolin on treatment of psoriasis by repressing HSP9O [J].Int Immunopharmacol,2020(79):60-70.
[5]VAJDI M,KARIMI A, KARIMI M, et al. Effects of luteolin on sepsis: A comprehensive systematic review [J]. Phytomedicine,2023(113):54-73.
[6] TAN C, FAN H, DING JH, et al. ROS -responsive nanoparticles fororal deliveryof luteolinand targeted therapy of ulcerative colitis byregulating pathological microenvironment[J]. Materials Today Bio,2022(14):100246.
[7]DING T,YI T T,LI Y,et al. Luteolin attenuates lupus nephritis by regulating macrophage oxidative stress via HIF -1α pathway[J].Eur JPharmacol,2023:953.
[8]AHMADI S M,FARHOOSH R, SHARIF A,et al. Structure-antioxidant activity relationships of luteolin and Catechin[J].JFood Sci,2020,85(2):298-305.
[9]ZHANG ZX,WANGJH,LINY,etal. Nutritional activities of luteolin in obesity and associated metabolic diseases:an eye on adipose tissues [J]. Crit Rev Food Sci Nutr,2024,64(12):4016-30.
[10]FUQT,ZHONG XQ,CHEN M Y,et al. Luteolin - loaded nanoparticles for the treatment of melanoma [J]. International Journal of Nanomedicine,2023(18): 2053 -2068.
[11] GE TX,YANG JW, ZHOU SH,et al. The Role of the pentose phosphate pathway in diabetes and cancer [J]. Front Endocrinol(Lausanne),2020(11):365.
[12]LEE J,YUN J S,KO S H. Advanced Glycation End Products and Their Effect on Vascular Complications in Type2Diabetes Mellitus[J].Nutrients,2022,14 (15).
[13]DIABETES RESEARCH AND CLINICAL PRACTICEASADIPOOYA K,UY E M. Advanced glycation end produets(AGFs)recentor for aGEsdiahetesand hone. (10):1799-818.
[14]KHALID M,PETROIANU G,ADEM A. Advanced glycation end products and diabetes mellitus:mechanisms andperspectives[J].Biomolecules,2022,12 (4):542.
[15]OLIVEIRAIDA,LUCENAD MD S,RODRIGUESB D C,et al. From metabolism to disease:the biological roles of glutamine:fructose -6 - phosphate amidotransferase(GFAT)[J].Pure Appl Chem,2023,95(9): 1009 -26.
[16]BHUYAN P,SARMA S,GANGULY M,et al.Glutamine: Fructose - 6- phosphate aminotransferase (GFAT)inhibitory activityof the anthocyanins present in black rice bran:a probable mechanism for the anti diabetic effect[J].JMol Struct,2020(1222):128957.
[17] CARMAN L, NELSON M D. Measuring AMPK activity in vivo using a genetically-encoded biosensor[J]. FASEBJ,2022(36):704-714.
[18]ZHENGAMY,KWAKSE,BIRKJB,et al.Greater phosphorylation of AMPK and multiple AMPK substrates in the skeletal muscle of 24-month-old calorie restricted compared to ad-libitum fed male rats[J].JGerontol A Biol Sci Med Sci,2023,78(2):177-185.
[19]PACKER M.Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development:implications for understanding the effects of sodium - glucose cotransporter 2 - Inhibitors [J].JAm Soc Nephrol,2020,31(5):907-919.
[20]DUGAN L L,YOU Y H,ALI S S, et al. AMPK dysregulation promotes diabetes -related reduction of superoxide and mitochondrial function[J].J Clin Invest,2013, 123(11) : 4888-4899.
[21]FARIDVAND Y, KAZEMZADEH H, VAHEDIAN V, et al.Dapagliflozin attenuates high glucose - induced endothelial cell apoptosis and inflammation through AMPK/ SIRT1 activation [J].Clin Exp Pharmacol Physiol, 2022,49(6):643-651.
[22]VERAOD,WULFFH,BRAUNAP.Endothelial KCa channels:Novel targets to reduce atherosclerosis - driven vascular dysfunction[J].Front Pharmacol,2023(14): 1151244.
[23]MARTINEZ -ARROYO O,ORTEGA A,FLORES - CHOVA A,et al. High miR -126-3p levels associated with cardiovascular events in a general population [J]. Eur JIntern Med,2023(113):49-56.
[24]MARUHASHI T,HIGASHI Y. Pathophysiological association between diabetes mellitus and endothelial dysfunction[J].Antioxidants,2021,10(8):1306.
[25]SINGHV,KAURR,KUMARI P,et al. ICAM-1 and VCAM -1: Gatekeepers in various inflammatory and cardiovascular disorders [J]. Clin Chim Acta,2023 (548): 117487.
[26]JI Z Z,XU Y C. Melatonin protects podocytes from angiotensin II-induced injury inanin vitro diabetic nephropathy model[J]. Mol Med Report,2016,14(1): 920 -926.
[27] ZHANG Z Y, DENG S F,SHI Q W. Isoliquiritigenin attenuates high glucose -induced proliferation,inflammation,and extracellular matrix deposition in glomerular mesangial cells by suppressing JAK2/STAT3 pathway [J].Naunyn Schmiedebergs Arch Pharmacol,2023, (397):123-131.
[28]REN Y,XIE W,YANG S,et al. Angiotensin-converting enzyme 2 inhibits inflammation and apoptosis in high glucose - stimulated microvascular endothelial cell damage by regulating the JAK2/STAT3 signaling pathway [J].Bioengineered,2022,13(4):10802-10810.
[29]YANG M,ZHANG C. The role of innate immunity in diabetic nephropathy and their therapeutic consequences [J].JPharm Anal,2023,14(1):39-51.
[30]PEREZ - MORALES ROSA E,DEL PINO MARIA D, VALDIVIELSO JOSE M,et al. Inflammation in Diabetic Kidney Disease[J].Nephron,2019,143(1):12 -16.
[31] MERTOWSKI S, LIPA P, MORAWSKA I, et al. Toll - Like receptor as a potential biomarker in renal diseases [J].Int JMol Sci,2020,21(18):6712.
[32]RAM C, JHA A K, GHOSH A, et al. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy:preclinical evidences with therapeutic approaches [J]. European Journal of Pharmacology, 2020:885.
[33]WU M, HAN W, SONG S, et al. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice [J].Mol Cell Endocrinol,2018(478):115-125.
[34]WU M,YANG Z, ZHANG C, et al. Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy[J].Metabolism,2021(118):154748.
[35]SCIOLI MG, STORTIG,D'AMICO F,et al. Oxidative stress and new pathogenetic mechanisms in endothelial dysfunction:potential diagnostic biomarkers and therapeutic targets[J]. J Clin Med,2020,9(6):1995.
[36] SIES H, JONES D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents [J]. Nat Rev Mol Cell Biol,2020,21(7):363-383.
[37] SAGOO M K, GNUDI L. Diabetic nephropathy: Is there a role for oxidative stress?[J].Free Radic Biol Med, 2018(116): 50-63.
[38]FAKHRUDDIN S,ALANAZI W,JACKSONKE. Diabetes - induced reactive oxygen species: mechanism of their generation and role in renal injury[J].JDiabetes Res,2017:1-30.
[39]CARO -ORDIERES T,MARIN -ROYO G,OPAZO - RiOSL,et al. The coming age of flavonoids in the treatment of diabetic complications[J].JClin Med,2020,9 (2):346.
[40]AZIZ N,KIM M Y,CHO JY.Anti-inflammatory effects of luteolin:A review of in vitro,in vivo,and in silico studies[J].JEthnopharmacol,2018(225): 342 -358.
[41] WANG Z Y, ZENG M M,WANG Z J, et al. Dietary luteolin:a narrative review focusing on Its pharmacokinetic properties and effects on glycolipid metabolism[J]. JAgric Food Chem,2021,69(5):1441-1454.
[42]OTIENO F,KAGIA R. Virtual sereening for chemical analogues similar to phytochemicals that inhibit aldose reductase in the development of diabetic microvascular complications [J].F1000 Research,2023,12.
[43]QIN C,LI Y, ZHANG Y,et al. Insights into oat polyphenols constituent against advanced glycation end products mechanism by spectroscopy and molecular interaction [J].Food Bioscience,2021(43):101313.
[44]WANGXR,ZHANGKL,ALI W,et al.Luteolin alleviates cadmium - induced metabolism disorder through antioxidant and anti-inflammatory mechanisms in chicken kidney[J].Poult Sci,2024,103(7):103817.
[45]PARK S,KIM D S,KANG S,et al. The combination of luteolin and l - theanine improved Alzheimer disease likesymptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid - β -infused rats[J].Nutr Res,2018(60):116-131.
[46]KWONEY,KIMSY,CHOIMS.Luteolin-enriched artichoke leaf extract alleviates the metabolic syndrome in mice with high-fat diet-induced obesity[J].Nutrients,2018,10(8):979.
[47]SHEHNAZ S I,ROY A, VIJAYARAGHAVAN R, et al. Luteolin mitigates diabetic dyslipidemia in rats by modulating ACAT -2, PPARα, SREBP -2 Proteins,and oxidative stress[J].Appl Biochem Biotechnol,2O23,195 (8):4893-4914.
[48]YANG S,MAC,WUH,etal.Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway [J]. Pharmacol Res,2020(153):104678.
[49]JIA Z,NALLASAMYP,LIUD,et al.Luteolin protects against vascular inflammation in mice and TNF- alpha - induced monocyte adhesion to endothelial cels via suppressing IKBα/NF - kB signaling pathway [J]. J Nutr Biochem,2015,26(3):293-302.
「50]SU J. XU H T.YUJJ.et al. Luteolin Ameliorates Hvpertensive Vascular Remodeling through Inhibitingthe Proliferation and Migration of Vascular Smooth Muscle Cells[J].Evid Based Complement Alternat Med,2015 (2015):1-14.
[51]ASSUNCAO HCR,CRUZYMC,BERTOLINOJS,et al.Protective effects of luteolin on the venous endothelium[J].MolCellBiochem,2021,476(4):1849 -1859.
[52] QUEIROZ M,LEANDRO A,AZUL L,et al. Luteolin improves perivascular adipose tissue profile and vascular dysfunction in goto-kakizaki rats[J].IntJMol Sci, 2021,22(24):13671.
[53]GENTILED,FORNAI M,PELLEGRINIC,etal.Luteolin prevents cardiometabolic alterations and vascular dysfunctioninmicewithHFD-inducedobesity[J].Front Pharmacol,2018(9):1094.
[54]WANGLP,GAOYZ,SONGB,etal.MicroRNAs in theprogress of diabetic nephropathy:a systematic review andmeta-analysis[J].Evid Based ComplementAlternat Med,2019:1-9.
[55]ZHANG M,HEL,LIUJ,etal.Luteolin attenuates diabeticnephropathy through suppressing inflammatoryresponse and oxidative stress by inhibiting STAT3 pathway [J].Exp Clin Endocrinol Diabetes,2021,129(10): 729 -739.
[56]YUQ,ZHANGMD,QIANLF,etal.Luteolinattenuates high glucose-induced podocyte injury via suppressingNLRP3 inflammasome pathway[J].Life Sci,2019 (225):1-7.
[57]HUANGWC,LIOUCJ,SHENSC,etal.LuteolinattenuatesIL-1β-induced THP-1 adhesion to ARPE19 cells via suppression of NF- kB and MAPK pathways [J].Mediators Inflamm,2020 (2020):1-15.
[58]CHENLY,CHENGHL,LIAOCK,etal.Luteolin improvesnephropathyin hyperglycemic rats throughanti - oxidant,anti-inflammatory,and anti-apoptotic mechanisms[J]. J Funct Foods,2023 (102):105461.
[59]XUX,YUZ,HANB,etal.Luteolinalleviatesinorganicmercury-induced kidney injuryvia activation of the AMPK/mTOR autophagy pathway[J]. J Inorg Biochem, 2021(224):111583. (收稿日期:2024-09-09編輯:劉斌)