李建倉
【關鍵詞】 數(shù)學教學;數(shù)形結合思想;滲透
【中圖分類號】 G633.6 【文獻標識碼】 A
【文章編號】 1004—0463(2016)04—0104—01
在數(shù)學研究中最為主要的兩個內容便是“數(shù)”與“形”,所謂的“數(shù)”主要是指數(shù)與式,而“形”則主要是指圖形。在數(shù)學教學之中將數(shù)與形有機結合,能夠將抽象思維進行轉換,形成形象思維,從而在一定程度上將數(shù)學的本質進行揭露,有效降低學習難度,有利于學生學習效率的提升。下面,筆者結合教學實踐,談談初中數(shù)學教學中數(shù)形結合思想的滲透。
一、利用數(shù)軸對數(shù)學概念加以認識
在數(shù)學學習之中數(shù)軸占據(jù)了十分重要的地位,數(shù)軸的應用能夠將數(shù)學問題簡單化,學生通過畫數(shù)軸能夠對部分數(shù)學知識有所認識。
例如,在講“相反數(shù)”這節(jié)課時,首先提出問題:在上體育課時,李老師請小明和小強分別站在李老師的左右兩邊(三人在同一條直線上),并與李老師相距1米。你能說出小明、小強與李老師的位置關系有什么相同點和不同點嗎?如果李老師所站的位置是數(shù)軸的原點,你能把小明、小強所站的位置用數(shù)軸上的點A、B表示出來嗎?它們在數(shù)軸上的位置有什么關系?讓學生動手實踐,在數(shù)軸上分別確定表示這些數(shù)的點,觀察并思考:這些點在位置上有怎樣的特征,引導學生歸納總結,形成相反數(shù)的概念。
二、利用函數(shù)圖象獲得函數(shù)性質
在整個初中數(shù)學學習之中函數(shù)知識貫穿其中,并在整個初中數(shù)學學習之中占據(jù)了十分重要的地位。比如,在七年級時候所學到的反比函數(shù),在八年級以及九年級學到的一次函數(shù)與二次函數(shù),都可以得知在數(shù)學學習之中數(shù)形結合思想始終貫徹其中。其中在初中數(shù)學教學之中,從圖象到性質到數(shù)學習題,都與數(shù)形結合有著密切的聯(lián)系。一般情況下在中考中的最后一道習題便是考察對二次函數(shù)的應用。在二次函數(shù)的圖象之中能夠對a、b、c進行判斷,并且可以求得定點坐標,在拋物線平移的過程之中也能夠看到對稱軸以及頂點坐標的變化。因此,在初中數(shù)學教學之中,引導學生將數(shù)與形進行巧妙結合,能夠幫助學生解決數(shù)學問題,提高學生的分析能力。
三、利用數(shù)形結合思想能夠將應用題變簡單
在初中數(shù)學教學中應用題同樣占據(jù)了非常大的比例,并且初中階段的應用題比較難,很多學生絞盡腦汁也無法計算出正確的答案。例如,在學習“一元一次方程”的時候,教師需要引導學生閱讀習題,從已知的條件之中得到重要的信息,并且對各個因素之間的關系進行分析。另外,在學習使用哪一種手機比較便宜這一習題的時候,可以采取坐標系的方式畫出函數(shù)圖象,在分析函數(shù)圖象的過程中,學生能夠清楚地得出結果,讓整個應用題變得非常簡單。
例如,小明與小剛家在周天相約出去共同游玩,早上兩人一起出門,走了20min之后遇到一片池塘,該池塘距離家有900m,小明玩耍一段時間后不想玩了,便保持原先的速度回家,小剛在池塘邊玩耍了10min之后也選擇回家,回家時間一共花費了15min。那么根據(jù)這一段敘述,能夠在下面的平面直角坐標系中將兩人離家的時間以及距離的關系進行描述嗎?
這一道習題是初中數(shù)學階段比較常見的習題,也是比較基礎的習題,在人們的生活中會經常遇到。如果出現(xiàn)這一類型的習題,數(shù)學教師需要積極引導學生從生活的角度出發(fā),并且利用數(shù)形結合思想對這一問題進行解決。其中,根據(jù)習題之中所出現(xiàn)的信息,可以選擇兩個未知數(shù)對時間以及距離進行表示,并表示出兩者的關系。這樣一來,通過練習,能夠提高學生對數(shù)軸的認識,并且能夠為日后的學習奠定基礎。
綜上所述,在初中數(shù)學教學之中,數(shù)形結合思想占據(jù)了十分重要的地位,并且對提高學生的數(shù)學成績具有十分重要的意義。在日常的數(shù)學學習之中,數(shù)學教師可以引導學生從數(shù)軸、幾何圖形等角度思考問題,讓學生對數(shù)學工具熟練掌握,保證數(shù)學知識的簡單化。這樣一來,不僅可以將數(shù)形結合思想真正融入到數(shù)學教學之中,并且也可以促使學生對數(shù)學概念、數(shù)學公式加深理解與掌握。
編輯:謝穎麗