楊春秀
摘要:數學中的各種概念、公式和理論都是由現實世界的原型抽象出來的,從這個意義上講,所有的數學知識都是刻畫現實世界的模型。數學建模就是建立數學模型來解決問題的方法。在小學階段,數學模型的表現形式為一系列的概念系統,算法系統,關系、定律、公理系統等。
關鍵詞:小學數學;建模思想;應用策略
數學是一門研究數量變化、空間模型的科學,數學模型是其中一個重要組成部分。數學建模起源于劍橋大學,隨著科學技術的不斷進步,數學建模逐漸受到社會各界的高度關注,無論在生產、工作還是社會生活中,都需要用到數學建模。所以,在小學教學過程中,正確應用建模思想,能夠從小培養學生的建模意識和建模能力。由于小學階段學生的認知能力和知識水平都相對較低,教師無法對學生進行建模教學,因此,學校領導要采取有效措施,將建模思想科學融入到小學教學中,從而使數學建模發揮出應有的作用。
一、在小學數學教學中滲透建模思想的意義
1.小學數學建模是利用小學數學知識中的一些原理和法則而建立一種教學模型,由于小學生的認知能力和知識水平相對較弱,所以在構建小學數學模型的時候不能含有難度過高的專業知識,要從小學生的認知角度出發,講究趣味性和實用性,并且要和生活緊密聯系,容易理解,通過學習和運用數學建模,使學生對數學知識產生深刻的印象。
2.將建模思想運用到小學教學中,可以活躍學生的思維,激發學生對學習數學的興趣性,使學生體驗到學習數學的快樂和意義。同時,數學建模有助于挖掘學生的內在潛能,培養良好的數學思維方式,提高數學品質,讓學生有充分的創新空間,使學生能夠靈活的運用數學知識,促進小學生早期快速發展。
二、小學數學建模思想滲透的可行性
數學模型不僅為數學表達和交流提供有效途徑,也為解決現實問題提供重要工具,可以幫助學生準確、清晰地認識、理解數學的意義。在小學數學教學活動中,教師應采取有效措施,加強數學建模思想的滲透,提高學生的學習興趣,培養學生用數學意識以及分析和解決實際問題的能力。數學在本質上就是在不斷的抽象、概括、模式化的過程中發展和豐富起來的。數學學習只有深入到“模型”、“建模”的意義上,才是一種真正的數學學習。這種“深入”,就小學數學教學而言,更多地是指用數學建模的思想和精神來指導著數學教學,“從學生已有的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋與運用的過程,進而使學生獲得對數學的理解的同時,在思維能力、情感態度與價值觀等多方面得到進入和發展。”
對數學建模這個概念來講也許是新的,但回想我們的日常教學不難發現我們的學生已經有數學建模的思想或意識,只不過沒有從理論的角度把它概括出來而已。例如,在以往教學求比一個數多幾的應用題時,經常碰到這樣一個例題“小明家養了6只公雞,養的母雞只數比公雞多3 只,母雞有幾只?”在教學此例時老師們都是采用讓學生擺、說等教學活動來幫助學生分析數量關系,理解“同樣多的部分”,但教學效果并沒有我們老師想象的那么好,一般同學們在解釋數量關系式6+3=9時,母雞和公雞是不分的,極大部分學生都會說6只公雞加3只母雞等于9只母雞。為什么學生不會用“同樣多的部分”去描述母雞的只數,其原因是十分明顯的,那就是學生在操作時頭腦中已經對現實問題進行簡化,并建立了一個有關母雞只數求法的數學模型,這個模型顯然是一種疊加模型,即6+3=9(只),而6表示什么在模型中已經是無關緊要,因為實際問題最終要解決的是數量問題。從以上這個教學實例至少可以說明兩點;其一,小學生在解決實際問題時有他自己的數學模型,有他自圓其說的解讀數學模型的方法,因此,小學生也有數學建模能力。其二,當學生的數學模型一旦建立了以后,即使他的模型是不合理或不規范的,但外人很難改變他的模型結構。
三、在小學教學中滲透建模思想的方法策略
1.知識鋪墊:在進行數學建模之前,首先要對建模的對象有一定的認知,再根據兩者之間的共通性進行建模。這就需要數學教師提供充分的條件,培養學生對數學知識的感知能力,在教學的過程要密切聯系新舊知識,運用之前學過的知識為新知識進行鋪墊,有效的減低了新知識的抽象程度,使學生更容易接納和理解新知識。例如在學習分數的課程中,教師要運用不同的教學模型指導學生,比如平均分蘋果、平均分花朵等,引導學生去發現不同模型的一些共同點,在這種方式下,能夠幫助學生積累知識,提高知識感知能力,加深對所學知識的認識和理解。
2.認識本質:數學建模是幫助學生學習數學,認識事物的一個實用工具,運用數學建模能夠解決大量的數學疑難問題。將數學建模和數學教學有機結合在一起,不僅能夠幫助學生建立數學模型,還能夠使學生認識到數學的本質,領悟到建模思想的真諦,幫助學生更有效的學習數學,鍛煉學生解決問題的能力。例如在學習平行線的時候,如果只是使用雙杠、斑馬線等素材,很難讓學生認識到知識的本質,所以,教師可以在教學過程中提出為什么平行線不能相交,引導學生測量平行線之間的距離,在這個過程中,學生很容易就能認識到平行線的本質特征,從而實現教學目的。
3.優化過程:在小學數學建模過程中,教師發揮著至關重要的作用。在小學課本上有很多生動有趣的例子,這些例子大部分都與教學主題高度相關,并且貼近生活,也在小學生的知識接受范圍內。因此,教師要充分利用這些例子,并在原例的基礎上衍生更多的數學模型,對教材進行深度把握,探索和尋找教材在建模中的作用。
小學數學建模是一種獨特的教學方式,通過在小學數學中應用建模思想,能夠激發學生的學習興趣,使學生積極主動參與到教學過程,幫助學生更加容易的理解和接受數學知識。目前的數學建模發展還不成熟,這就需要數學教師引導學生感知知識的表象,通過所學知識進行鋪墊,建立數學模型;指導學生認識知識的本質,解決疑難問題;不斷優化創建數學模型的過程,在原有的實例上延伸更貼近生活的例子,使學生更加深刻的理解數學建模,從而推動數學建模在數學教學中快速成熟。endprint