廖鳳霞
摘要:數學概念是教學的核心內容,是基礎知識的起點,是邏輯推理的依據,是正確、合理、迅速運算的保證。學生正確、清晰、完整地掌握數學概念,是掌握數學知識的基礎。小學數學中的一些概念,對小學生來說,由于年齡小,知識不多,生活經驗不足,抽象思維能力差,理解起來有一定的困難。因此教師在有關概念的教學過程中,一定要從小學生年齡實際出發,要把概念教學放到突出地位,這樣才會收到好的教學效果。
關鍵詞:小學數學 ; 理解概念 ;策略
現在很多小學生對學習數學的積極性不高,缺乏學習興趣,認為數學特別難學。我們只要認真分析,就不難發現,主要是學生對一些數學概念沒有搞清楚。結合我的教學經驗,談談如何讓小學生理解數學概念。
一、直觀形象地引入概念
數學概念比較抽象,而小學生,特別是低年級小學生,由于年齡、知識和生活的局限,其思維處在具體形象思維為主的階段。認識一個事物、理解一個數學道理,主要是憑借事物的具體形象。因此,教師在數學概念教學的過程中,一定要做到細心、耐心,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。如在教平均數應用題時,我利用鉛筆做教具,重溫“平均分”的概念。我用9個同樣大的小木塊擺出三堆,第一堆1塊,第二堆2塊,第三堆6塊,問:“每堆一樣多嗎?哪堆多?哪堆少?”學生都能正確回答。這時,我又把這三堆木塊混到一起,重新平均分三份,每份都是3塊,告訴學生“3”這個新得到的數,是這三堆木塊的“平均數”。我再演示一遍,要求學生仔細看,用心想:“平均數”是怎樣得到的。學生看我把原來的三堆合并起來,變成一堆,再把這堆木塊分做3份,每堆正好3塊。這個演示過程,既揭示了“平均數”的概念,又有意識地滲透“總數量÷總份數=平均數”的計算方法。然后,又把木塊按原來的樣子1塊,2塊、6塊地擺好,讓學生觀察,平均數“3”與原來的數比較大小。學生說,平均數3比原來大的數小,比原來小的數大,這樣,學生就形象地理解了“求平均數”這一概念的本質特征。
二、運用舊知識引出新概念
數學中的有些概念,往往難以直觀表述。如比例尺、循環小數等,但它們與舊知識都有內在聯系。我就充分運用舊知識來引出新概念。在備課時要分析這個新概念有哪些舊知識與它有內在的聯系。利用學生已掌握的舊知識講授新概念,學生是容易接受的。蘇霍姆林斯基說:“教給學生能借助已有的知識去獲取知識,這是最高的教學技巧之所在。”從心理學來分析,無恐懼心理,學生容易活躍;無畏難情緒,易于啟發思維;舊知識記憶好,容易受鼓舞;所以運用舊知識引出新概念教學效果好。例如從求出幾個數各自的“倍數”從而引出“公倍數”、“最小公倍數”等概念。總之,把已有的知識作為學習新知識的基礎,以舊帶新,再化新為舊,如此循環往復,既促使學生明確了概念,又掌握了新舊概念間的聯系。
三、實踐出真知
常言說,實踐出真知,手是腦的老師。學生通過演示學具,可以理解一些難以講解的概念。如一年級小學生初學數的大小比較。是用小雞小鴨學具,一一對比。如一只小雞對一只小鴨,第二只小雞對第二只小鴨,……直到第六只小雞沒有小鴨對比了,就叫小雞比小鴨多1只。又如二年級小學生學習“同樣多”這個概念也是用學具紅花和黃花,學生先擺5朵紅花、再擺和紅花一樣多的5朵黃花,這樣就把“同樣多”這個數學概念,通過演示(手),思維(腦),形成概念,符合實踐、認識,再實踐、再認識的規律。這比老師演示、學生看,老師講解、學生聽效果好,印象深、記憶牢。
四、從具體到抽象,揭示概念的本質
在教學中既要注意適應學生以形象思維為主的特點,也要注意培養他們的抽象思維能力。在概念教學中,要善于為學生創造條件,引導他們通過觀察、思考、探求概念的含義,沿著由感性認識到理性認識的認知過程去掌握概念。這樣,可以培養學生的邏輯思維能力。如圓周率這個概念比較抽象。一般教師都是讓學生通過動手操作認識圓的周長與直徑的關系,學生通過觀察、思考,分析,很快就發現不管圓的大小如何,每個圓的周長都是直徑的3倍多一點。教師指出:“這個倍數是個固定的數,數學上叫做“圓周率”。這樣,引導學生把大量感性材料,加以分析綜合,抽象概括拋棄事物非本質東西(如圓的大小,紙板的顏色,測量用的單位等)抓住事物的本質特征(不論圓的大小,周長總是直徑的3倍多一點)。形成了概念。
五、用“變式”引導學生理解概念的本質
在學生初步掌握了概念之后,我經常變換概念的敘述方法,讓學生從各個側面來理解概念。概念的表述方式可以是多種多樣的。如質數,可以說是“一個自然數除了1和它本身,不再有別的因數,這個數叫做質數。”有時也說成“僅僅是1和它本身兩個因數的倍數的數”。學生對各種不同的敘述都能理解,就說明他們對概念的理解是透徹的,是靈活的,不是死背硬記的。有時可以變概念的非本質特征,讓學生來辨析,加深他們對本質特征的理解。
六、對近似的概念加以對比
在小學數學中,有些概念的含義接近,但本質屬性有區別。例如:數位與位數、體積與容積,減少與減少到等等相對應概念,存在許多共同點與內在聯系。對這類概念,學生常常容易混淆,必須把它們加以比較,避免互相干擾。比較,主要是找出它們的相同點和不同點,這就要對進行比較的兩個概念加以分析,看各有哪些本質特點。然后把它們的共同點和不同點分別找出來,使學生既看到進行比較對象的內在聯系,又看到它們的區別。這樣,學的概念就會更加明確。對近似的概念經常引導學生進行比較和區分,既能培養學生對易混概念自覺地進行比較的習慣,也能提高學生理解概念的能力。多年來教學實踐的體會:重視培養學生的比較思想有幾點好處:(1)有利于培養學生思維的邏輯性。(2)有利于提高學生的分析問題的能力。(3)有利于培養學生系統化的思維方式。
總之,在新的課程理念下,指導學生對數學概念的學習是一個長期的過程。只要能夠根據學生的年齡特點及生活實際,遵循教學規律,采用靈活多樣的教學方法進行講述,就能幫助學生學習和正確地掌握一些容易混淆的數學概念。
參考文獻:
[1] 楊慶余.《小學數學課程與教學》. 高等教育出版社,2010年。
[2] 馬云鵬.《小學數學教學論》.人民教育出版社,2011年。
[3] 羅增儒,李文銘.《數學教學論》. 陜西師范大學出版社,2012年。endprint