施振強
【摘 要】伴隨著我國數學教學工作的不斷改進和發展,在教學工作開展過程中,教育工作者逐漸將動態教學方式和學生的創造性思維相結合,希望幫助學生有效提升數學思維能力,改善解題過程,將數學創造性思維更好的融入到動態幾何教學工作開展過程中,進一步培養學生的幾何思維能力,提升初中幾何數學教學效果。
【關鍵詞】初中動態教學;幾何;創造性思維;培養
在教學過程中,采用創造性思維開展教學工作,這是一種高級的探索求知過程,對數學進行教學研究過程中,可以以一種懷疑的、不確定的態度進行認知,能夠多角度、多層次的進行感知,尋找數學問題的答案,以動態幾何軟件作為工具開展數學教學活動,采用語言構建數學教學知識,通過電腦繪制幾何圖形來提升學生解決幾何問題的能力,提升初中幾何數學教學質量。
一、動態幾何教學和創造性思維內容分析
初中動態幾何教學主要是利用畫板等動態幾何軟件幫助教師開展初中數學幾何模塊的教學工作,對傳統的教學方式進行了創新和拓展,使得學生對于初中幾何教學活動產生興趣,能夠從幾何問題中發現規律和本質,使得學生具備較強的空間想象力。
數學創造性思維是一種思維方式,也是一個復雜的心理活動過程,采用綜合辯證思維方式,整合人腦思維活動進一步開展相關的護理工作,使得學生可以打破原有的數學理論和結構限制,進一步更好的探索新的優化數學的教學方式,從而提升初中幾何數學教學效果。
二、初中動態幾何教學和創造性思維培養研究
1.采用幾何畫板來培養學生的創造性思維
動態幾何是為學生學習數學提供了一個自主性較強的學習環境,可以對學生的各方面能力,尤其是創造性思維實施很好的培養,教師也可以通過引導學生使用幾何畫板的變化操作方式,起到有效的處理效果。比如在初中幾何學習三角形相似、全等相關知識點過程中,就可以通過尋找實物,選擇幾何畫板來幫助患者更加直觀、具體的學習知識點,使得學生能夠獲取真實的教學經驗,同時也可以更好的培養學生的空間想象力和創造性思維方式,進一步提升了初中幾何數學教學質量。
利用幾何畫板進行引導是一個非常高效率的教學方法,幾何畫板具有實物形態,學生可以更加直觀、具體的看到幾何畫板形狀,能夠對畫板形態進行很好的認識和理解,進一步將其和數學幾何知識相結合,將具體的形象引入到理論知識學習過程中,更好的保證教學工作順利開展,同時也可以加強對于幾何知識的理解和掌握,更好的在以后實踐工作或者是生活中解決生活難題,解釋一些幾何形狀。
2.動態幾何教學通過將數學美呈現來更好的培養學生的創造性思維方式
初中幾何學習過程中,很多圖形以及多個圖形構成是充滿數學美的,這種數學美可以使得學生更積極、熱情的投入到初中動態幾何思維的研究過程中,更好的培養學生對于初中幾何學習的熱情和興趣,從而提升了學生的創造性思維,引發學生對于數學問題的聯想,進一步加強認識,受到啟發,對數學問題進行歸納總結和整理,得到創造性結果,在動態幾何教學工作開展過程中,教師需要重視對學生審美能力的挖掘和提升,進一步促進學生創造性思維活動開展,提升教學能力。
在學習全等、相似這些三角形相關的知識點時,教師可以通過對不同的圖形進行變換,在三角形全等學習過程中,如果已知兩個等腰三角形的腰長度相同,同時還已知底邊上的高長度相等,問題是這兩個三角形是相似還是全等了?這樣的題目應該怎么去證明呢,證明兩個三角形全等的方式有很多種,比如三角形的三條邊相等,三角形的兩邊和這兩邊的夾角相等,或者是三角形的兩個角和這兩個角之間的邊相等,這些都可以用來證明兩個三角形相等。在如此多的公式定理之下,會發現題目中已知了有兩條邊相等,因此我們可以將其證明范圍縮小,證明三角形的三條邊相等或者是證明三角形的兩邊和這兩邊的夾角相等,這兩個相對容易一點,只需要證明第三個條件符合就可以完成證明過程,這就需要考慮已知的第二個條件,已知底邊上的高長度相等大三角形中分成了兩個小的直角三角形,在直角三角形中,根據勾股玄定律,會發現斜邊和其中一條直角邊相等,第三條邊的長度也是相等的,再根據等腰三角形相關的知識點就會發現兩個三角形的底邊也是相等的,這就證明了三角形的三條邊相等,學生可以采用剪紙等進行重疊試驗,會發現證明結果和實驗結果相一致,因此兩個三角形全等,到此為止,完成了論證過程,也就對三角形相關的知識進行了一個比較系統的梳理和認識。
三、結束語
初中幾何教學工作開展過程中,培養學生創造性思維能力,是當前新課改的一個重要要求和目標,教師在具體教學活動開展過程中,一定要重視對學生創造性思維的培養和發現,將其很好的融合到初中動態幾何教學工作開展過程中,加強學生對于初中幾何的認識,提高學習興趣,提升初中動態幾何的教學效率,保證初中學生在一個愉快的環境下學習,更好的開展教學工作。
參考文獻:
[1]徐美珍.初中動態幾何教學與數學創造性思維的培養[D].遼寧師范大學,2005.DOI:10.7666/d.y812613.
[2]游志上.初中動態幾何教學與數學創造性思維的培養研究[J].課程教育研究,2014,(28):121-121.
[3]鐘初明.初中動態幾何教學與數學創造性思維的培養[J].消費導刊,2013,(10):192-192.