摘 要:數形結合思想是初中階段學習數學的常見思維,這種思維能夠形象直觀地將“數”與“形”之間的聯系表達出來,利用兩種不同的表達方式獲取更多的信息,從而得到解決問題的思路。教師可從幾個經典的數學問題展開討論,簡要分析在初中階段“數形結合”思維在數學中的應用。
關鍵詞:數形結合;數學思維;初中數學
中圖分類號:G63 ? ? ? ? ?文獻標識碼:A
文章編號:1673-9132(2019)36-0093-01
DOI:10.16657/j.cnki.issn1673-9132.2019.36.085
數學是一門靈活的學科,不是依靠死記硬背大量題目便能學好的學科,而是需要講求數學思維的學習。隨著教育界對教師的教學要求不斷提高,在日常教學中,數學教師應當著重注意學生數學思維的形成,引導學生利用已知的較為經典的數學思維去解決相對復雜的實際數學問題,養成卓越的數學解題思維。目前,將數形結合思想引入到數學各個部分的教學中已成為初中數學教學的一個關鍵點,也是需要廣大初中數學教師進行掌握的一種重要且有效的教學思想。
一、數形結合思想的簡要說明及重要作用
初中階段的學生,大部分已經擁有基礎的圖形知識,并且學會了利用簡單的數學工具加以輔助,對數學題加以理解和解答。“數形結合思想”簡言之,就是將“數字”與“圖形”通過某一數學規律結合起來去解決復雜數學問題的思想過程。這種思想能夠將抽象的數學關系轉化為直觀明了的幾何圖形,或者將復雜的立體幾何轉化為簡單的數學公式,能幫助學生快速找到數學問題的突破口,讓思維較為單一的初中學生更輕松地掌握數學理論。例如,在初中數學中最基礎且最常見的“速度與時間問題”,這類問題在實際生活中也經常遇見,利用數形結合的思維方式,可以通過設未知數、畫輔助圖等方法解決這類問題。數形結合思想對習慣單一數學計算的初中學生來說,不失為邁入數學大門的一把金鑰匙,這種思想可以廣泛地應用于數學的各個學習階段,在解決統計問題、方程式、函數等較為復雜的數學問題時效果顯著。
二、數形結合思想在解決數學問題的應用
(一)理清解題思路,找到題目突破口
數形結合思想可以被學生利用來解決很多數學方面的實際問題,初中數學題目當中有許多問題都來源于實際生活,當需要學生利用數學知識去解決這些日常問題時,將數形結合思想滲透進解決方法中,能幫助學生快速理清解決問題的思路,找到解決問題的突破口。
數形結合的優勢還體現在可以利用坐標軸求得時間與距離的函數關系,將圖像轉化為簡單的一次函數進行計算。在實際教學活動中,教師應當教會學生靈活使用這種思維方法。數學問題的解決方案不止一個,數形結合思想可為學生提供更多解決問題的思路。
(二)將抽象的數字運算轉化為直觀的幾何
結合教學經驗可知,平面幾何是初中數學中的重難點,數形結合思想在這一部分當中的運用可以說是淋漓盡致。在這一部分的實際教學中,教師應當注意引導學生積極利用數形結合思想解決問題,以便更輕松地理解圖形的性質。初中生學習數學時,要想將思維方向由形象過渡到抽象,根據教學經驗來說,都需要借助直觀具體的形狀來輔以理解記憶。“數形結合思想”就是連接具體與抽象之間的橋梁。初中階段數學的邏輯思維是較為初級的,并且在很大程度上仍然具有具體形象的影子。例如,從低年級學習正數和負數,到初中高年級的數據統計與整理,這些較為抽象的概念都可以將現實生活中具體存在的事物或圖形作為依據。學生根據以往的學習經驗,再結合數形結合思想,就能夠理解這些概念。
平面幾何問題一直都是初中數學教學中的重要難點,教師應當在這部分的教學中,積極滲透數形結合思想,著重培養學生結合數形傳達信息的能力,形成良好的數學解題思維,使其更加有效率地處理幾何圖形問題。通過引導學生將圖形中傳達的信息與題干中的信息相結合,解答思路便躍然紙上。
(三)利用圖形呈現數量關系
統計問題同樣是數形結合思想的普遍運用之地,通常來說,面對大量需要處理的繁復數據時,就連受過數據處理訓練的成年人都會感到枯燥難耐,更何況是未經過數據處理培訓的初中生。而利用圖形呈現數量關系,將功能不一的統計圖引入初中數學教學中,靈活利用數形結合思想的滲透,能幫助初中生理清題目所給出的大量數據間的關系,使初中生不至于看到大量數據就怯場,從而影響教學效率。在初中學習的統計問題中,統計圖能夠將數據形象直觀地表現在形式不一的統計圖中,以便學生發現數據的數學規律,統計圖大多依附于平面直角坐標系上,少部分為餅狀圖等其他形式。當研究幾組數據的變化規律以及集中趨勢或其他數學變化時,統計圖可以加深學生對數據處理的理解,而一些統計學概念如平均數、眾數、方差等,結合統計圖更能讓學生理解記憶。
三、結語
數形結合思想對初中數學教學具有不可替代的作用,這一重要思想被廣泛運用于數學學習的不同階段,讓“數”與“形”的關系更加直觀清楚,幫助學生更好的學習復雜的數學問題,形成良好地數學解題思維。教師應當在教學過程中不斷開拓進取,研究新的教學方法,將數形結合思想靈活運用到日常教學中去。
參考文獻:
[1]張妙琴.如何實現"數"與"形"的結合——初中數學教學中數形結合思想應用探究[J].數學大世界(下旬版),2017(6).
[2]戴彥雪.相互滲透,交叉作用——論初中數學教學中數形結合思想的應用[J].數學大世界(中旬),2017(2).
[責任編輯 胡雅君]
作者簡介: 曹坤(1979.8— ),男,漢族,安徽滁州人,中學一級,研究方向:初中數學教學。