999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

新課標(biāo)下初中數(shù)學(xué)教學(xué)逆向思維的開(kāi)發(fā)與探索

2021-05-06 15:52:28馬建林
關(guān)鍵詞:初中數(shù)學(xué)教學(xué)新課標(biāo)教學(xué)方式

馬建林

【摘要】隨著科學(xué)技術(shù)的不斷發(fā)展,社會(huì)對(duì)于教育的要求也不斷提高.初中作為義務(wù)教育的基礎(chǔ)階段,其所蘊(yùn)含的教學(xué)重要性不言而喻.在傳統(tǒng)的教學(xué)模式里,題目—公式—答案是教師在很長(zhǎng)一段時(shí)間里所推崇的做題思路,這種題海戰(zhàn)術(shù)對(duì)于應(yīng)試確實(shí)卓有成效,但也在一定程度上固定了學(xué)生的思維.所以在新課標(biāo)下的初中數(shù)學(xué)的教學(xué)策略中,逆向思維這一教學(xué)概念被提出,如何培養(yǎng)學(xué)生的逆向思維能力就成了教師的首要工作任務(wù).

【關(guān)鍵詞】新課標(biāo);初中數(shù)學(xué)教學(xué);教學(xué)方式;開(kāi)發(fā)與探索

逆向思維,顧名思義就是“倒過(guò)來(lái)”的思維.在應(yīng)試教育下,基本上所有人都是從已知出發(fā)去尋找未知,但是在求解未知之后,又有多少人能夠從已知的未知出發(fā)逆推回最開(kāi)始的問(wèn)題呢?這種思維方式打破了大部分人的定式思維,為解決問(wèn)題提供了另一個(gè)乃至多個(gè)思考方向,從問(wèn)題的另一面進(jìn)行更為深入的探索.本文從逆向思維的概念到培養(yǎng)學(xué)生逆向思維的目的以及培養(yǎng)逆向思維的方式方法進(jìn)行了一個(gè)較為完整的闡述,希望有助于今后的新課標(biāo)下初中數(shù)學(xué)教學(xué)的推進(jìn)與發(fā)展.

一、逆向思維的培養(yǎng)對(duì)于初中數(shù)學(xué)教學(xué)的重要性

在新課標(biāo)的教學(xué)要求下,教師應(yīng)更多地對(duì)學(xué)生進(jìn)行逆向思維的培養(yǎng),這有助于學(xué)生在分析問(wèn)題尋找答案的過(guò)程中有更多視角可以選擇,從而收獲解決問(wèn)題所帶來(lái)的成就感,讓學(xué)生感受到數(shù)學(xué)的魅力,提高上課的積極性,同時(shí)也有效地豐富了課堂內(nèi)容.

例如,在講授“二元一次方程組消元法”的章節(jié)中,學(xué)生因?yàn)閯倓傔M(jìn)入初中,對(duì)于一元一次方程、二元一次方程的解法還處于不熟練的階段.教材上的例題講解,大多都是讓學(xué)生從題目中的已知條件出發(fā),通過(guò)列式與不斷變式得出結(jié)論,有一些抽象思維不是特別敏捷的學(xué)生可能會(huì)對(duì)此感到困惑,對(duì)于解題步驟、技巧等無(wú)法理解和吸收.而當(dāng)正向思維的解題方式行不通時(shí),教師可以引導(dǎo)學(xué)生用逆向思維進(jìn)行思考.例如:

可以先設(shè)x=5,y=6.

隨便想兩個(gè)數(shù)字與x,y相乘相加,就有4×5+2×6=32,所以得出4x+2y=32,再隨便想兩個(gè)數(shù)字與x,y相乘相減,就有5×5-4×6=1,所以得出5x-4y=1,將兩個(gè)式子放在一起我們就可以得出一個(gè)完整的二元一次方程組:4x+2y=32,5x-4y=1.

通過(guò)這樣的方法,學(xué)生就能從出題者的角度來(lái)思考,從題目的另一種方向來(lái)解答.教師再通過(guò)不斷地以題補(bǔ)題,讓學(xué)生對(duì)消元法的使用得到更深層次地理解與掌握.

二、在初中數(shù)學(xué)教育中如何對(duì)學(xué)生進(jìn)行逆向思維的培養(yǎng)

1.反向思考,突破學(xué)生定式思維的困境

在這個(gè)世界上任何事物都有正反兩面,就像數(shù)學(xué)定理一樣,通過(guò)一個(gè)已知條件推導(dǎo)知另一個(gè)定理,但是新得知的定理逆推回去就一定能得到原來(lái)的條件嗎?答案是不一定的.所以數(shù)學(xué)才會(huì)衍生出命題、逆命題、互逆命題等概念.在通常的教學(xué)實(shí)踐中,都是從已知的命題出發(fā),通過(guò)平時(shí)教學(xué)中所積累的方法,最終得出答案.但是在某些章節(jié)的學(xué)習(xí)中,從原命題出發(fā)的這個(gè)方法就不適用了.這時(shí)候,命題的對(duì)立面——逆命題這個(gè)概念就出現(xiàn)了.

例如:在進(jìn)行幾何的教學(xué)時(shí),就出現(xiàn)了一個(gè)命題:兩直線平行,同位角相等.它的逆命題是:同位角相等,兩直線平行.由于這兩個(gè)命題的結(jié)論與條件互為對(duì)方的條件與結(jié)論,所以我們稱之為互逆命題.通過(guò)這個(gè)例子可以引出命題與逆命題之間“逆”的關(guān)系,就是反之成立.讓學(xué)生從原命題出發(fā)去思考它的相反方向是不是也成立.再比如對(duì)頂角相等這個(gè)命題的逆命題就是相等的角是對(duì)頂角,這個(gè)逆命題就是錯(cuò)的.像這樣不斷通過(guò)命題與逆命題的思考,可能讓學(xué)生形成逆向思維的思考方式,在思考一個(gè)問(wèn)題的同時(shí)去思考這個(gè)問(wèn)題的對(duì)立面是否正確,充分發(fā)揮學(xué)生的腦力,引導(dǎo)學(xué)生進(jìn)行探索,最終養(yǎng)成逆向思維的習(xí)慣.

命題對(duì)于有些理解力不足的學(xué)生來(lái)說(shuō)可能就是記住了事,但是如果有了逆向思維引導(dǎo)的話,就可以使學(xué)生不僅能夠加強(qiáng)對(duì)原有命題的理解與掌握,還能從事物的對(duì)立面去思考與探索,摸索出屬于自己的逆向思維方式.

2.發(fā)散思維,營(yíng)造獨(dú)立思考的環(huán)境

在新課標(biāo)這個(gè)教育目標(biāo)下,教師就應(yīng)當(dāng)發(fā)揮園丁的角色,引導(dǎo)學(xué)生通過(guò)逆向思維的方式對(duì)問(wèn)題進(jìn)行思考、解決問(wèn)題,激發(fā)他們對(duì)于逆向思維的興趣,從而自主地實(shí)現(xiàn)思維方式的轉(zhuǎn)變.如果學(xué)生自己沒(méi)有意識(shí)到思維方式需要轉(zhuǎn)變,那就很容易形成思維定式.

例如:在講授“三條邊都相等的三角形是等邊三角形”時(shí),學(xué)生都知道這個(gè)定義是正確的,那么逆推回來(lái)呢?等邊三角形的三條邊相等也是正確的;三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和這個(gè)結(jié)論是正確的,相反,它的逆命題:不相鄰的兩個(gè)內(nèi)角之和等于三角形的一個(gè)外角也是對(duì)的;等腰三角形的兩條邊相等與兩條邊相等的三角形是等腰三角形都是真命題等等,通過(guò)這樣不斷對(duì)不同命題進(jìn)行逆推訓(xùn)練,能讓學(xué)生在思考問(wèn)題的時(shí)候下意識(shí)地想起:這個(gè)問(wèn)題是否有對(duì)立面,它的對(duì)立面是否正確,為什么正確等.與此同時(shí),教師作為指引者還要在大環(huán)境中營(yíng)造這種思考氛圍,通過(guò)小組PPT展示的方法,讓每個(gè)學(xué)生都參與到逆向思維的思考中,這樣整個(gè)班就能共同營(yíng)造出逆向思考的氛圍.

環(huán)境對(duì)人的影響總是潛移默化的,環(huán)境氛圍到位了,只要身在其中,就會(huì)自發(fā)地開(kāi)始轉(zhuǎn)變.思維上的轉(zhuǎn)變更要注重氛圍,只有所有人都身處其中,才能自發(fā)地對(duì)轉(zhuǎn)變思維提供一個(gè)向前的推動(dòng)力.

3.解決問(wèn)題,培養(yǎng)反向思維的能力

進(jìn)行教育的目的是解決問(wèn)題.在初中數(shù)學(xué)的教學(xué)過(guò)程中,教師上課的目的在于教授學(xué)生知識(shí),學(xué)生將其吸收掌握之后對(duì)實(shí)際問(wèn)題進(jìn)行應(yīng)用解答.解決問(wèn)題的方法有很多,可以正向推導(dǎo),也可以逆向推導(dǎo),只要能解決問(wèn)題就是正確的方法,所以途徑?jīng)]有正反之分,只有正確與否,正反只是相互對(duì)比得出的客觀存在.在了解并淺顯地掌握了逆向思維的思考方式之后,如何應(yīng)用就是下一步的目標(biāo).在解決問(wèn)題的過(guò)程中,教師要讓學(xué)生從實(shí)際出發(fā),這樣能更加深刻地體會(huì)到逆向思維的運(yùn)用,并將其應(yīng)用至其他地方.

例如:數(shù)學(xué)證明中有一種方法叫反證法,就是將題目中所要證明的結(jié)論先設(shè)為否定,通過(guò)否定不成立來(lái)逆推出原結(jié)論成立.就像題目:求證:2不是有理數(shù).我們就可以用反證法的思維來(lái)推導(dǎo):

先假設(shè)2為有理數(shù),那么存在兩個(gè)互質(zhì)的正整數(shù)p,q,

使得2=pq,

將等式左邊的2移至右邊,得出 p=2q,

再將等式兩邊同時(shí)平方,得出p2=2q2,

由偶數(shù)都是可以被2整除可以得出2q2是偶數(shù),所以p2也是偶數(shù).

由偶數(shù)的平方也是偶數(shù)可知p是偶數(shù),

因此就可以設(shè)p=2s,代入上式,得4s2=2q2,

即p2=2s2.

根據(jù)上述定理可知q也是偶數(shù).

所以p,q都是不互質(zhì)的偶數(shù),與題目所給條件矛盾,

故2不能寫(xiě)成分?jǐn)?shù)形式,即2不是有理數(shù).

這樣的反向思考方式能讓學(xué)生從無(wú)法求證的困境中脫離出來(lái),尋找到解決問(wèn)題的方法.

單靠理論上的講解很難對(duì)思維方式進(jìn)行改變,所以從解決實(shí)際問(wèn)題著手,讓學(xué)生在問(wèn)題的求解過(guò)程中領(lǐng)會(huì)到逆向思維的思考方式,從而對(duì)它有更深刻地理解,加強(qiáng)了學(xué)生對(duì)它的掌握能力,最終達(dá)到教學(xué)目標(biāo).

4.加強(qiáng)訓(xùn)練,養(yǎng)成逆向思考的習(xí)慣

正向思維之所以被稱為正向思維,是因?yàn)樗拇蟊娦耘c常規(guī)性,它是大部分人在大部分時(shí)間里對(duì)于外界認(rèn)知的思考方式,也就是所謂的慣性思維.所以在學(xué)生已經(jīng)接受了十年左右的正向思維的熏陶下,想要轉(zhuǎn)變他們的思維方式,就必須經(jīng)過(guò)大量的培訓(xùn)與系統(tǒng)的訓(xùn)練.只有足夠大的量才能引起質(zhì)的變化,只有大量運(yùn)用逆向思維來(lái)解決問(wèn)題,才能對(duì)思維方式進(jìn)行改變.

例如:遇到“若化簡(jiǎn)|1-x|-|x-4|的結(jié)果為2x-5,求x的取值范圍”這樣的題目,從它的反面入手思考就是一條更好的捷徑.

原式=|1-x|-|x-4|

由題目可知,|1-x|-|x-4|=2x-5

因?yàn)樵綆в薪^對(duì)值,直接運(yùn)算是不現(xiàn)實(shí)的,所以我們就可以從絕對(duì)值概念的反方向思考,可知1-x≤0,且x-4≤0.

由上述不等式就可推出1≤x≤4.

再比如“若已知關(guān)于x的不等式(a-1)x>a2-2的解集為x<2,求a的值”這樣的題目,我們同樣也可以用反向思維來(lái)解題:

根據(jù)不等式的基本性質(zhì):不等式兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向發(fā)生改變,可以得出a-1<0,且a2-2=2(a-1),可以求得a=0.

通過(guò)這樣的習(xí)題訓(xùn)練,能讓學(xué)生充分感受到逆向思維的思考過(guò)程,加快思維轉(zhuǎn)變的速度與進(jìn)程.思維的轉(zhuǎn)變光靠教師課上的45分鐘引導(dǎo)肯定是不夠的,所以無(wú)論教師還是學(xué)生都要注重課后的時(shí)間,對(duì)這部分時(shí)間加以高效地利用,才能將教師課上所傳授的知識(shí)進(jìn)行更深層次的理解和掌握,進(jìn)而徹底擁有逆向思考的能力,將其在考試中、實(shí)踐中得到最大程度的利用,從而達(dá)到新課標(biāo)標(biāo)準(zhǔn)下的數(shù)學(xué)教學(xué)目的.

綜上所述,思維的轉(zhuǎn)變不是一蹴而就的,需要長(zhǎng)時(shí)間的訓(xùn)練,以及系統(tǒng)性的教學(xué)與指引.從提出概念到營(yíng)造環(huán)境,從介紹內(nèi)涵到重復(fù)訓(xùn)練,這都是教師所計(jì)劃的周期性教學(xué)活動(dòng).可以說(shuō)如果沒(méi)有教師前期的探討、計(jì)劃到最后的付諸實(shí)踐,就沒(méi)有逆向思維的培養(yǎng),也就沒(méi)有思想上的進(jìn)步.教育本就是國(guó)之根本,作為一名教師,教書(shū)育人就是本職工作,為家庭、為社會(huì)、為國(guó)家培養(yǎng)下一代的人才就是教育的根本目標(biāo).教師只有做好本職工作,培養(yǎng)好了學(xué)生的思維能力,才能推動(dòng)社會(huì)的發(fā)展,使得全人類都擁有光明的未來(lái).

【參考文獻(xiàn)】

[1]夏正興.數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想和方法探研[J].成才之路,2019(12):24.

[2]穆益梅.主題探究性學(xué)習(xí)模式在初中數(shù)學(xué)教學(xué)中的運(yùn)用[J].中學(xué)數(shù)學(xué),2019(8):94-95,97.

[3]徐昆堯.一言一行皆數(shù)學(xué):探析初中數(shù)學(xué)生活化教學(xué)策略[J].學(xué)周刊,2019(14):83.

猜你喜歡
初中數(shù)學(xué)教學(xué)新課標(biāo)教學(xué)方式
歡迎訂閱4-6年級(jí)《新課標(biāo) 分級(jí)閱讀》
體現(xiàn)新課標(biāo) 用好新教材
師道·教研(2021年2期)2021-03-28 02:20:53
歡迎訂閱4-6級(jí)《新課標(biāo) 分級(jí)閱讀》
高校鋼琴教學(xué)方式拓展的思考與實(shí)踐
淺談如何提高導(dǎo)學(xué)案在初中數(shù)學(xué)教學(xué)中的實(shí)效性
探究初中數(shù)學(xué)解題能力的培養(yǎng)方法
如何推動(dòng)初中數(shù)學(xué)教學(xué)中的素質(zhì)教育
考試周刊(2016年76期)2016-10-09 08:56:18
高中數(shù)學(xué)高效教學(xué)方式與方法優(yōu)選例談
高中化學(xué)教學(xué)方式探析
探索不同教學(xué)方式 提高課堂教學(xué)效果
主站蜘蛛池模板: 婷婷久久综合九色综合88| 国产欧美中文字幕| 美女视频黄又黄又免费高清| 99视频有精品视频免费观看| 亚洲国产精品久久久久秋霞影院| 精品福利视频导航| 国产十八禁在线观看免费| 在线精品视频成人网| 亚洲第一在线播放| 多人乱p欧美在线观看| 国产网站一区二区三区| 免费jizz在线播放| 国产免费人成视频网| 欧美A级V片在线观看| 久久精品中文无码资源站| 欧美视频二区| 综合社区亚洲熟妇p| 亚洲一区网站| 久久无码av一区二区三区| 2021天堂在线亚洲精品专区| 国产一级毛片网站| 国产成人三级| 美女扒开下面流白浆在线试听| 久久香蕉国产线看观| 国产日韩欧美成人| 国产成人亚洲欧美激情| 在线a网站| 久久人搡人人玩人妻精品一| 久久久久夜色精品波多野结衣| 久99久热只有精品国产15| 久久综合五月| 日韩欧美高清视频| 亚洲一本大道在线| 久久精品一品道久久精品| 国产91无毒不卡在线观看| 美臀人妻中出中文字幕在线| 久久久久无码国产精品不卡| 国产真实乱子伦精品视手机观看 | 国产嫖妓91东北老熟女久久一| 伊人激情综合网| 2018日日摸夜夜添狠狠躁| 亚洲小视频网站| 日本人又色又爽的视频| 欧美日韩精品在线播放| 国产新AV天堂| 免费毛片网站在线观看| 秋霞国产在线| 精品久久久久久成人AV| 中文天堂在线视频| 激情视频综合网| 国产午夜精品一区二区三| 宅男噜噜噜66国产在线观看| 午夜国产精品视频| 国产精品漂亮美女在线观看| 青青久在线视频免费观看| 乱码国产乱码精品精在线播放| 久久人体视频| 毛片久久网站小视频| 久久精品国产91久久综合麻豆自制| 国产无码制服丝袜| 国产原创自拍不卡第一页| 亚洲成人免费在线| 国产精品视频观看裸模| 日本不卡在线视频| 欧美特黄一级大黄录像| 亚洲免费黄色网| 91久久夜色精品国产网站| 呦系列视频一区二区三区| 亚洲国产精品无码久久一线| 91在线高清视频| 亚洲精品高清视频| 国产成人a在线观看视频| 中文字幕波多野不卡一区| 亚洲欧美日韩中文字幕一区二区三区| 中文字幕中文字字幕码一二区| 黄色网页在线播放| JIZZ亚洲国产| 国产日韩精品一区在线不卡| 日本不卡在线| 久久动漫精品| 91热爆在线| a级毛片免费看|