譚影玥
[摘? 要] 錯題是承載學生錯誤的載體,往往蘊含著知識的重難點、易錯點,蘊含著學生數學理解的盲點、疑點,因而有著重要的意義和價值。在小學數學教學中,教師要建立“錯題集”,追溯“錯題因”,催生“錯題說”,從而提升學生的反思力。通過探尋錯題再利用策略,促進學生數學生命成長!
[關鍵詞] 錯題再利用策略;反思力;小學數學
著名心理學家蓋耶認為,“誰不考慮嘗試錯誤,不允許學生犯錯誤,就將錯過最富有成效的學習時刻”。在小學數學教學中,錯誤是一種極其寶貴的資源,是教師必須加以利用的。通常而言,錯題是承載學生錯誤的載體,往往蘊含著知識的重難點、易錯點,蘊含著學生數學理解的盲點、疑點,因而有著重要的意義和價值。將“錯題”再利用,就能“化腐朽為神奇”,就能“變事故為故事”,從而讓學生從中獲得一種啟示,獲得一種警醒,獲得一種洞察、感悟等。本文主要基于學生在數學學習實踐中的典型“錯題”,探尋“錯題”再利用策略,進而提升學生的反思力。
一、建立“錯題集”,提升學生反思力
沃爾波斯說過:“所有的科學都是錯誤先真理而生。”德國著名哲學家黑格爾則這樣說:“錯誤本身乃是達到真理的一個必然環節。”在小學數學教學中,教師要有意識地引導學生對考試、作業、練習等過程中出現的錯誤進行整理,從而建立“錯題庫”“錯題集”“錯題簿”等。從某種意義上說,“錯題集”就是對學生錯誤資源的收集,能有效地提升學生的學習效能,增進學生數學學習的信心,讓學生不再“一錯再錯”。
建立“錯題集”,有助于提升學生的反思力。在日常數學學習中,尤其是在數學復習中,有學生往往比較茫然。而有了“錯題集”,學生的數學反思就有了重要的載體、媒介。學生只要將“錯題集”拿出來,針對“錯題集”中的典型錯誤展開深度分析、研討、判斷,就能深化自己的認知。
比如教學《分數應用題》(蘇教版六年級上冊)時,學生收集了許多的典型性錯題,如其中有這樣的一道典型錯題:一種商品,先降價十分之一,再提價十分之一,現價與原價比較怎么樣?不少學生,受到了低年級數學解決問題中的“先降價多少元,再提價多少元”的具體數量的影響,在解決問題的過程中發生了錯誤。而將這種典型性的錯誤習題收集到“錯題集”中,則能讓學生每一次與它照面時,能有效地反思錯誤。有學生認識到,先降價十分之一,是指降價了原價的十分之一;再提價十分之一,是指提價了降價以后價格的十分之一。由于原價和降價以后的價格不同,因而降的價和提的價的具體數量就不同。并且,原價要比降價以后的價格要高一些,所以降的價要比提的價高一些,所以現價要比原價低。有學生認為,可以采用假設法解決問題,即假設商品原價為100元,先求出降的價,也就是10元,降價后的價格就是90元;再求出提的價,也就是9元,現價就是99元。在反思“錯題集”中的經典性錯題時,筆者還向學生提供了與經典錯題相匹配的變式性習題,比如“一種商品,先提價十分之一,再降價十分之一,現價與原價比較”,等等。通過比較,學生認識到,無論商家是先降價再提價還是先提價再降價,只要降價和提價的分率相同,現價都要比原價低,等等。反思,讓學生的數學學習逐漸超越感性認知,抵達知性、智性、理性的境界。
建立“錯題集”,要求教師呵護學生的錯題,不因為學生在解決問題的過程中出現錯誤而對學生大加打壓和責罰。從某種意義上說,建立“錯題集”的過程,也就是一個“容錯”的過程。通過積極的容錯,將錯題演化為學生數學學習最為重要的課程資源。通過“錯題集”,引導學生明辨是非、明辨事理,促進學生的反芻、反省、反思。借助“錯題集”,引導學生彼此之間展開互動,從而讓學生從“錯題集”中“淘金”。
二、追溯“錯題因”,提升學生反思力
俗話說得好,“世界上沒有錯誤,全是放錯了地方的財富”。錯誤之所以是財富,其根本原因就在于通過錯誤,可以發現學生認知狀態,可以把握學生具體學情,可以把脈到學生的認知盲區、認知誤區、認知疑點等。作為教師,在數學教學實踐中要充分利用錯題,對學生解決問題過程中出現“怎樣的錯誤”“為什么出現錯誤”以及“怎樣出現錯誤”等問題展開深度剖析,從而找出進一步深化學生認知的策略、方式和方法。有些錯誤是由于學生審題而出錯,有些錯誤是由于學生思維定式而出錯,有些錯誤是由于學生概念模糊而出錯。通過展開錯題成因分析,能有效地提升學生的反思力。
比如教學《圓錐的體積》(蘇教版六年級下冊)這一部分內容時,學生遇到了這樣一個問題:一個圓錐的體積是37.68平方厘米,它的底面積是12.56平方厘米,它的高是多少厘米?不少學生在解決這個問題時發生了錯誤,具體而言有兩類:其一是直接用37.68÷12.56,其二是用37.68÷12.56÷3。這兩種錯誤對于學生而言,具有典型性、一般性和普遍性,因而具有深度分析的意義和價值。教學中,筆者將這兩種典型的錯誤用投影展示出來,不僅引導學生認知“錯誤點”,即“錯在哪里”,更引導學生分析錯誤成因,即“為什么會發生這樣的錯誤”。在分析中,不僅讓學生認識到自身的認知錯誤,更讓學生認識到自身的元認知錯誤。也就是說,這樣的錯誤分析,不僅深入學生的學習現象層面,更深入學生的學習心理層面。通過分析,學生深刻地認識到,第一類錯誤看似是學生的粗心,但究其根本原因是沒有深刻理解等底等高圓柱和圓錐之間的關系;第二類錯誤看似學生不善于進行公式變形,但究其根本原因是沒有深刻理解公式中體積、底面積、高的相互依存關系等。有了對錯誤成因的分析,學生就能在分析中積累思維經驗、認知經驗等,從而在遭遇相同、相似的問題中不再出錯。
在引導學生分析典型錯題的成因時,教師應當站在學生立場,從學生的視角、學生的心理揣摩學生的錯誤。只有揣摩學生的錯誤,教師的教學才能有的放矢,才能富有針對性、實效性。通過對典型錯題的分析,有助于積累學生的數學基本活動經驗,讓學生的數學學習更具有方向性、策略性。
三、催生“錯題說”,提升學生反思力
偉大的革命導師列寧曾經這樣說:“真理向前一步就是謬誤。”在反思學生錯誤的過程中,我們似乎應該反過來說,“差錯向前一步就是正確”。偉大的革命導師恩格斯則這樣說:“最好的學習是從差錯中學習。”那么,怎樣從“錯題集”中學習呢?筆者認為,教師不僅要引導學生建立“錯題庫”“錯題集”,也不僅要引導學生反思錯誤,更要引導學生糾正錯誤,對錯誤“現身說法”,從對錯誤的剖析、解讀、策略研討中表達錯誤,從表達中提升學生的數學反思力。
催生學生的“錯題說”,也就是催生學生的“錯誤表達”。學生的錯誤有些是可以預設的,是一種我們想得通的錯誤,而有些錯誤則是不可預設的,是不可思議的錯誤。通過錯誤表達,讓錯誤在學生的數學學習旅程中“多飛一會兒”。通過錯誤表達,學生才會“不貳過”。通過描述錯誤、表達錯誤,讓學生“吃一塹,長一智”,從而將錯誤“撿拾”起來。比如教學《圓的面積》(蘇教版五年級下冊)這一部分內容,有學生在解決問題“一個半徑為5米的圓形水池,周圍鋪一條寬1米的小石子路,小路的面積是多少平方米”時,竟然簡單地、想當然地列式“3.14×12=3.14(平方米)”。教學中,筆者引導學生表達錯誤,讓學生將自身的理解偏差呈現出來。通過敘述,教師不僅要引導學生掌握圓環面積的一般解決問題的方法,而且可以引導學生將相關的方法精致化,建構出一般的圓環面積計算公式。同時,教師還要引導學生深度分析、比較,讓學生解決一些更加復雜的幾何圖形面積問題。不僅如此,當學生表達錯誤、對錯誤有了深刻認知之后,學生不僅能有效地改正錯誤,更為重要的是,學生能形成一種實事求是的解決問題品質,形成一種有根有據、有理有據的學習品質,而不是主觀的臆想、臆測。
“前事不忘,后事之師。”合理運用錯誤,就是要借助于錯題,真正實現融錯教學。也就是將學生的錯誤消融,從而讓數學教學抵達“化錯”之境。化錯,是一種高超的教學藝術,也是一種理性的教學科學。對于學生的數學學習力提升、數學核心素養培養來說,對于學生的數學生命成長來說,“錯”若“化”開,成長自來。