陸國相
摘要:為了順應(yīng)新課改不斷升級發(fā)展的需要,當前小學數(shù)學教學階段,對小學生的綜合素質(zhì)能力及數(shù)學運算能力培養(yǎng)越來越重視。在日常數(shù)學教學過程中,簡便運算成為小學生數(shù)學教學的主要任務(wù),不難發(fā)現(xiàn),只有奠定運算能力培養(yǎng)的基礎(chǔ),才能幫助小學生更好的了解簡便的計算技巧,是提高計算的準確性和效率,為后期的數(shù)學學習打下堅實基礎(chǔ)的必要條件。因此,現(xiàn)針對日常教學過程中存在的現(xiàn)狀展開分析,重點研究提高簡便運算的教學舉措。
關(guān)鍵詞:小學數(shù)學;簡便運算;教學質(zhì)量
引言:簡便運算作為小學數(shù)學學習歷程中最基礎(chǔ)的必備技能,是小學數(shù)學教學的重要課題,根本原因是如何通過運算能力的提升鞏固鍛煉學生的數(shù)學思維能力,確保學生在了解把握數(shù)學基本技能的同時,不斷提升小學生運算能力中解答的速度和精準性。為此,應(yīng)用簡便運算能力的鍛煉促進數(shù)學教學的推進,成為學生思維訓練的最主要和最常見的手段,以簡便運算推動小學生對數(shù)學中涉及的定義、定理和運算規(guī)律等教學知識點的把握,達到提升教學的目標。
一、小學數(shù)學“簡便運算”的存在的問題
1、混淆基本的計算法則
以數(shù)學式子簡化為例,重點討論小學生運算過程中易錯點之一。比如,乘法分配率中出現(xiàn)的一個簡便計算:233×21—33×21=(233—33)×21=200×21=4200。以及和這個相差不多成立的一個式子,613÷20—13÷20=(613—13)÷20=600÷20=30。式子簡化的方式讓學生充分體會到運算的樂趣后,遇到730÷12—730÷2便會很自然的運用上述方法解答,出現(xiàn)730÷14—730÷4=730÷(12-2)=730÷10=73的運算結(jié)果。出現(xiàn)這種失誤的根本就是學生沒有充分理解科學的運算法則而只是生搬硬套。沒有真正了解乘法和除法兩種運算法則的區(qū)別。因為括號中合并運算的加減法是被除數(shù)還是除數(shù)直接關(guān)系到運算法則的可運用性。再如,利用乘法的結(jié)合律可以簡化計算:13×4×25=13×(4×25)=1300。不少學生依葫蘆畫瓢的進行搬運計算:128÷16÷4=128÷(16÷4)=128÷4=32。造成出現(xiàn)這種常見的運算錯誤的例子不在少數(shù),也成為了日常數(shù)學教學中需要重點關(guān)注指導的重點。
2、忽略應(yīng)用題的關(guān)鍵點
以應(yīng)用題解答為例,重點探討學生日常學習中因?qū)忣}不仔細不清晰出現(xiàn)的問題。比如,一口井深12米,蝸牛從井底往上爬。它白天爬3米,晚上下滑2米。問蝸牛第幾天可以爬到井口?一般來說,學生初次看到這種題型會感覺無從下手,不妨一起來分析下這個題,可以發(fā)現(xiàn)第一天爬了1米(白天3米-晚上2米),以此類推會出現(xiàn)忽略關(guān)鍵點思維混亂的情況,有點學生干脆就放棄解答了。另外也有部分學生抓住1米/天的規(guī)律,通過抓住關(guān)鍵規(guī)律結(jié)合自己的理解進行直觀的運算,出現(xiàn)1米/天,完成12米高度需要的時間為12÷(3—2)=12天,回答第12天爬到井口。可以發(fā)現(xiàn),得出12天這個答案的學生思維是敏捷的,不過他們卻忽略解題中的關(guān)鍵要素,也就是第8天來到之前,蝸牛離井口就只有4米了,第10天白天到來之前就已經(jīng)爬到井口了。這不僅成為學生解題的易錯點難點,也成為了應(yīng)用題解答的易錯點和突破點。
3、對數(shù)學規(guī)律的把握不到位
以最常見的自然數(shù)求和為例,一旦涉及數(shù)字特別多的時候,發(fā)現(xiàn)數(shù)學運算規(guī)律就顯得格外重要。比如,1到99的自然數(shù)相加的和是多少?乍一看,有100個數(shù)字這么多,怎么能快速解答出這個看似不可能在短時間解答出來的問題,會讓一部分學生知難而退,也會讓另一部分學生在老師指導后覺得得心應(yīng)手,得到1+2+3+…+99=(1+99)+(2+98)+…+(50+50)=100×50=5000。其實這個錯誤根源還是在于學生一知半解,沒有真正把握數(shù)學內(nèi)部的規(guī)律所致。
二、“簡便運算”教學舉措剖析
1、強化數(shù)學運算法則的教學。要抓住如何強化學生提升對運算法則的根本認識著手。比如5×7×8,老師可以舉例:若干重量是6克的小木塊,以每排6個為單位進行分布排列,那么每排為單位的重量就是6×6=36克;在此基礎(chǔ)上,再以每排7個單位小木塊為一個整體進行分布排列,那么每個單位長度的重量就是36×7=252克。我們也可以這樣想:多有的小木塊數(shù)量為7×6=42個,小木塊單個重量為6克/塊,所以一共重6×42=252克。由此得出以下式子為:(6×6)×7=6×(6×7)。而對于除法就不同了。比如360÷6÷5可以將它想象成有360個蘋果,先將蘋果平均分給6組小朋友,每組小朋友可以分到60個蘋果;然后每組由5個小朋友組成,那么60個蘋果平均分給5個小朋友,一個小朋友能分到60÷5=12個蘋果。所有的蘋果用來分給5×6=30個小朋友,所以每個小朋友分到的蘋果個數(shù)是360÷(5×6)=360÷30=12個,可以得出360÷6÷5=360÷(6×5),并不是360÷6÷5=360÷(6÷5)。其他算式可以舉對應(yīng)的例子。以這種更為直觀的方式展現(xiàn)在小學生面前,更便于小學生們結(jié)合現(xiàn)實生活中的場景理解運算法則。
2、創(chuàng)新情境教學。如何引導學生跳出干巴巴的讀題階段升華到融入解題實際,關(guān)注應(yīng)用題的從解題開始到結(jié)束的各個細節(jié),把握解題關(guān)鍵點涉及的突破口。以汽車相遇為例,假設(shè)汽車從一段固定的距離作往返運動,特別要重點留心的就是汽車在掉頭這個階段的運動規(guī)律。
3、強化數(shù)學運算規(guī)律把握。老師可以抓住數(shù)學教學中較為常見且極易出錯的問題進行數(shù)學運算規(guī)律的講授。比如,在1-99這組自然數(shù)的相加運算中,可以將把首尾兩個數(shù)字配成一對的方式,引導學生發(fā)現(xiàn)每兩組數(shù)字之和為100這個規(guī)律。即:1+2+3+…+99=(1+99)+(2+98)+…+(49+51)+50=100×49+50=4950,或者1+2+3+…+99=(1+99)+(2+98)+…+(50+50)—50=100×50—50=4950。在這里,是需要老師對教學中的這類問題進行歸納后,通過不斷強化學生對同類問題的運算理解來引導學生把握這類問題的數(shù)學規(guī)律,保證學生真正理解后才能不出錯。
結(jié)語
在小學階段遇到的簡便運算,是小學生的必經(jīng)之路,也是老師確保教學質(zhì)量必須攻克的難關(guān),只有在日常教學中充分挖掘教學過程中出現(xiàn)的各種問題才能有的放矢,提出有針對性的可行性舉措。如何將日常教學與生活實際有機結(jié)合,將數(shù)學簡便運算通過加強運算的準確性來提升教學手段,從而反向促進“簡便運算”教學效率的提高,做到強化簡便運算能力以培養(yǎng)學生優(yōu)秀數(shù)學能力的重要手段,這也為有數(shù)學潛力天賦的學生奠定了良好的根基。
參考文獻:
[1] 鄭耀欽. 簡便運算對小學數(shù)學教學質(zhì)量的影響[J].讀與寫:中旬, 2021(5):1.
[2] 趙協(xié)仿. 簡便運算對小學數(shù)學教學質(zhì)量的影響研究[J].2020:13.
[3] 薛亞芬. 基于信息技術(shù)的小學數(shù)學簡便運算教學探究[J]. 文理導航:教育研究與實踐, 2020(7):10.
1062501705238