趙杰
摘 要:函數的單調性是高中數學中非常基礎和重要的教學內容,學好函數單調性的相關知識有利于學生學習更深層次的數學知識。淺談高中數學函數的單調性的學習難點,并根據個人的實踐經驗提出相應的對策。
關鍵詞:高中數學;函數;單調性;難點;對策
函數的單調性是高中數學中基礎的教學內容,其貫穿于整個高中數學教學中。學好函數的單調性才能夠支撐學生學習更深層次的高中數學。
因此,提高函數單調性的教學質量是高中數學教師不得不正視的問題。基于此,本文在此淺談高中數學函數的單調性的學習難點,并提出相應的應對策略,以期能為有關人士提供有益參考。
一、高中數學函數的單調性的學習難點
1.學生沒有掌握數形結合的學習方法
數形結合是一種非常重要的數學學習方法,主要指的是數與形之間的一一對應關系。數形結合就是把抽象的數學語言、數量關系與直觀的幾何圖形、位置關系結合起來,通過“以形助數”或“以數解形”即通過抽象思維與形象思維的結合,可以使復雜問題簡單化,抽象問題具體化,從而起到優化解題途徑的目的。
但大部分學生并沒有這種習慣和意識,沒有掌握數形結合的正確方法。而函數的單調性僅依靠學生的想象是難以理解的,沒有這種正確的學習方法會極大地阻礙學生的學習。
2.對定義域的理解較為抽象
定義域作為函數中非常重要的一個組成部分,在函數單調性中的作用不可忽視。定義域往往決定了函數的單調性,但學生對定義域的理解較為抽象,沒有深刻領悟到定義域的內涵和其對于函數單調性的重要作用。
例如,已知函數f(x2)的定義域為-1≤x≤1,求函數f(x)的定義域。在這種復合函數中,學生難以理解定義域,難以得到正確的答案,也就無法進一步確定函數的單調性。
二、高中數學函數的單調性學習難點的應對策略
1.養成學生畫圖的習慣
首先,教師要針對學生的數學學習方法進行重點突破,也就是要讓學生學會數形結合的重要方法,養成看題畫圖、以形解題的習慣和意識,要培養學生將抽象的條件通過直觀的圖形表現出來,并以此為根據進行正確的分析。
在函數單調性的教學中,教師就要引導學生制作坐標軸,必須要將函數繪制在坐標系中,將各種限制條件如函數的定義域等等標注出來,再以此為背景進行解題。通過直觀的坐標系學生對函數的分析更加透徹,也更容易通過觀察得出函數的單調性,并且不容易遺忘定義域的限制,最終得出正確答案。
要養成學生畫圖的習慣關鍵就在于教師的引導,教師應該引導學生在讀題的同時進行繪制,將題中的條件一一標注出來。通過不斷地引導和培養,學生就能夠在日后讀題的時候養成數形結合的習慣和意識。
2.通過一定的練習提高學生的能力
要提高函數單調性的教學質量,單純的書面講解是絕對行不通的,特別是針對函數定義域這種難以理解的抽象知識,必須要通過一定的練習,讓學生在練習中發現問題、解決問題和總結問題。
只有在反復練習的過程中,學生才能夠逐步理解相關題型的解題技巧,并且對定義域這一類知識有更深的領悟。
教師需要注意的是,學生的練習并不是盲目的,必須要有目的性和針對性,不能將不同的題型混在一起,這樣容易讓學生思維混亂,進一步阻礙學生的學習。因此,教師必須做好引導工作,要為學生安排好練習的題目,最好是以專題訓練的方式對學生的弱點進行集中練習。
另外,教師必須要重視課后總結,也就是要讓學生在練習后總結和回顧,而不是一味的反復練習,只有通過不斷總結,才可以不斷提升,避免出現重復的問題并且對知識體系進行梳理和總結,達到鞏固的效果。
總的來說,高中數學中函數的單調性是基礎性的教學內容,其對于學生的難點就在于定義域這一類抽象的知識難以把握,而且學生沒有掌握數形結合這種正確的學習方法。要提高學生學習函數單調性的效率就必須針對這兩個難點,通過引導和練習的方式讓學生養成使用數形結合方法的意識和習慣,并且得到解題技巧,在練習和總結中進步。
參考文獻:
孫紅.函數單調性導學[J].高中數學教與學,2008(04).endprint