溫光興
摘 要:初中數學不僅擁有一定的理論性與選擇性,還有很強的目的性。用美引發學習興趣,對于初中生來說,他們對美有著天生的崇敬。自新課改實施以來,最大限度地幫助學生提高觀察力,已經成為初中數學教學的重要課題。結合初中數學教學,對怎樣提高學生的課堂觀察力進行了簡單的探討。
關鍵詞:初中數學;課堂教學;觀察能力
觀察一直被作為高級知覺,它也是有目的、有計劃的持久性思維。隨著新課標的不斷深入,觀察能力被作為教學的重要方面,廣受老師和學術界重視。從當前的教學過程來看,受各種因素影響依然存在各種問題,很大程度地制約著教學工作的開展。對此,在教學中,數學老師必須整合教學實際情況,從多個方面著手,幫助學生提高觀察能力,也只有這樣才能改善教學成果,確保教學有效性。
一、初中數學課堂觀察能力特性
1.選擇性
對初中數學課堂進行觀察,并不是觀察整個過程,而是有選擇性地觀察。初中數學作為一門復雜的課程,它要求在觀察的同時,有意識地選擇,受既定因素與條件的影響,選擇性始終存在,但描述的內容并不全面。
2.理論性
從教學反饋的信息來看,初中數學需要將基礎指導與理論作為基礎,在觀察中,需要仔細地觀察對象與問題,當然這些需要以教學理論和方式為牽引。
3.目的性
初中數學不僅擁有一定的理論性與選擇性,還有很強的目的性。因此,初中數學的課堂觀察針對的是某一問題或者某一現象。在觀察中,人們通常是帶著一定的目的進行研究與觀察。在數學課堂中,除了要具有一定的目的性,還必須有目的地選擇方式方法,通過合理、科學的培訓,從根本上確保課堂觀察的有序進行。
二、提高初中數學課堂觀察能力的方法
1.激發觀察興趣
從教學反饋的信息來看,學習動機比外部作用更加持久、活躍,主動性更加強烈。興趣則是內在動機的展現,它能有效地激發觀察興趣。具體的方法如下:
用美引發學習興趣,對于初中生來說,他們對美有著天生的崇敬。數學作為一門邏輯性很強的藝術學科,它的美集中在統一、對稱、奇異、簡單等方面。數學圖形所展現的內在美、形式美、奇異美,都是引導學生對數學產生興趣和觀察能力的條件,它能快速地激發學習欲望。
引導學生觀察、解決問題,讓學生意識到解決數學問題的作用,能直接培養學習興趣。例如,在系數與一元二次方程教學中有如下材料:y1、y2是y2+(k+2)y-1=0的兩根,并且3y1-11y1=y2,試求k的具體值。在解答這個問題時,可以通過啟發式得到:y2+y1=-(k+2),y2y1=-1,3y1-11y1=y。從系數應用的對稱性中,引導學生進行觀察:表達式中y1、y2是否相等;y2是否能用y1表示;根據后兩個等式,能否表示兩根的乘積或者和。從觀察中,學生就能快速發現變形,并且得出解決方案。
從教學經驗來看,成功的感受能夠激發學生內心,提高學習興趣。因此,在初中數學教學中,我們必須正視邏輯關系、數量換算與圖形結構。在課堂教學中,盡量引導學生學會主動觀察,通過為學生創造條件與機會,整合教材內容,有目的、有意識地向學生闡述數學定理與解決問題的方式方法;通過設計出具有趣味性與情趣性的問題,讓學生自主分析、觀察,總結數學概念、定理與公式,在掌握特殊題型的同時,享受成功帶來的快樂,以此調動學習與觀察的主動性與積極性。
2.塑造科學的觀察方式
從初中生所處年齡段與心理特征來看,他們缺乏心理素質,在數學教學與觀察能力上有很大的局限性。因此,在初中數學教學中,我們必須正視觀察方式的培養與指導,以此保障觀察的科學性。
首先,引導學生把握觀察順序,讓其養成點與面、面與點的觀察習慣。對于不合理的觀察方式,在分析示范中進行指正。如:在幾何教學中,已知A、B、C、D為直線四點,試求圖中有幾條線段,可以從以下幾點進行提問:將A作為端點可以得到幾條線段?將B、C、D作為端點可以得到幾條線段?你的觀察順序與正確的順序是否存在差異?通過這類問題,讓學生意識到觀察事物的重要性與合理性。
其次,讓學生明確學習是一項循序漸進的工作,并且讓其養成觀察的好習慣。在說明內在規律的同時,從各個方面出發,多方面觀察。它要求既觀察明顯的表面特征,又要察覺隱含的、未知的關系。例如,在對等腰三角形進行教學時,有如下材料,已知△ABC,AB與AC相等,P為BC上任一點,AB與PE垂直,相交于點E;AC與PF垂直,相交于點F;AB與CD垂直,相交于點D,試求CD=PF+PE。對于該題,老師可以從大三角形與面積之和相等的角度以及全等三角形的判定方式等方面進行觀察,最后得到多種解題思路。
最后,需要引導學生領會常用的觀察方法,具體如分類觀察、特殊—一般、對比觀察等。在明確觀察任務與目的的同時,編制周密的計劃,以做好準備工作。在觀察中,通過對相關資料進行分析、整理、總結、歸納,讓學生養成自主觀察和積極觀察的好習慣。
3.讓其養成觀察品質
觀察作為有效的思維視覺,它對智力發展,培養觀察能力具有重要作用。因此,在初中數學觀察能力培養中,必須注重觀察的全面性、目的性、深刻性與精確性的培養。
其中,全面性要求正確反映事物構成、全貌以及相互關系,從事物內在中掌握事物數形,并且指出特定狀態下的可能性。在課堂觀察中,通過主動引導學生掌握事物發展與規律性,深入事物本質和原有程序中。例如,在配方法解決一元二次方程中,(x-1)2=2,x2-2x+1=2,x2-2x-1=0,可以從判定等式特征、完全平方式的轉化中,引導學生有目的地全面觀察。
觀察能力的培養作為提高初中生學習成效的有效方式,利用觀察,從觀察中歸納、總結,最后能夠達到認識事物的要求。因此,在初中數學教學中,我們必須從學生實際情況出發,引導學生大膽質疑,改善思維活動和教學有效性。
參考文獻:
[1]趙英.初中數學課堂觀察能力培養策略淺析[J].文理導航·教育研究與實踐,2014(8):156.
[2]眭中兵.淺談初中數學課堂觀察能力的提高[J].華章,2013(25):268.
[3]丁正香.初中數學課堂觀察能力的培養[J].學園·教育科研,2013(2):166.
編輯 謝尾合