謝紅芬
摘 要: 小學數學中包含著大量的數學概念,它是基礎知識的重要組成部分,也是基礎的基礎。但學生在學習過程中往往感到數學概念枯燥、乏味,學習興趣不高,致使學生對所學概念的理解不夠深刻,影響了學生思維的發展。如何搞好數學概念的教學呢?通過十多年的教學實踐,作者認為主要從以下三個方面考慮:根據小學生的思維特點,在操作中學習概念;在實際運用中加深對概念的理解;不斷把所學的新概念納入原有的概念系統中。
關鍵詞: 小學數學 概念教學 教學策略
數學概念是數學教材結構與小學生認知結構中最基本的組成因素。在教學中,我們立足于現實生活的具體現象或事物,以學生的感性認識為出發點,通過直觀的教學方法,引導學生動腦、動口、動手,誘發學生敞開思維的“門扉”,使其積極主動地參與到概念的形成過程中,感知和認識概念的內涵和外延,從而深刻地理解、掌握概念。下面談談我的一些做法。
一、在操作中學習概念
著名心理學家皮亞杰認為:“思維是從動作開始的,切斷了動作和思維之間的聯系,思維就不能得到發展?!笨梢妱幼髟谛W生的思維活動中起著舉足輕重的作用。概念是最基本的思維形式,被稱為思維的細胞,因此,讓學生在操作中學習概念是符合學生的認知特點的。遵循兒童的這一思維特征,我在教學一些“起始概念”,以及易混、似是而非的概念時,加強了學生的操作活動。如:教學“平行與垂直”時,我讓學生進行如下操作。
1.折一折
讓學生拿出課前已準備好的兩張紙。
(1)把一張紙折2次,使折痕互相平行;
(2)把一張紙折2次,使折痕互相垂直。
2.畫一畫
讓學生拿出三角板和筆,在折好的紙上用三角板沿著折痕把四條線畫出來。
3.量一量
(1)用三角板量一量所畫的兩條平行線之間的寬度,你發現了什么?
(2)用三角板的兩條直角邊分別靠在兩條互相垂直的直線上,頂點靠在交點上,你發現了什么?
4.說一說
通過剛才的觀察和操作,請同學們說一說:
(1)怎樣的兩條線是互相平行的直線?
(2)怎樣的兩條線是互相垂直的直線?
在學生“折一折、畫一畫、量一量、說一說”四位一體下,將“平行與垂直”的概念一氣呵成,相信學生一定能夠“形成概念”。
二、在實際運用中加深對概念的理解
要使學生真正理解概念,有效途徑之一就是強化概念的運用。因此,每教完一個新的概念,我都注意從不同的角度、不同的方面安排學生運用概念解決問題的練習。
1.“變式”練習
“變式”是指從不同角度、方面和方式變換事物呈現的形式,以便揭示其本質屬性。如,在學習了三角形的“高”后,我讓學生依據高的定義畫銳角三角形、直角三角形和鈍角三角形的高。這三種不同三角形的“高”有的在三角形內,有的卻在三角形外,有的就是三角形的兩條邊。盡管高的位置不同,但每條高都是從角的頂點向對邊所作垂線的長。學生在反復作高的過程中,明白了高的真正含義,提高了自己的作圖技能,為進一步學習三角形的性質奠定了基礎。
2.加強易混概念間的對比練習
如果說變式是從材料方面促進理解的話,對比則是從方法上促進理解。根據概念與概念之間的聯系與區別,特別是針對學生對一些易混淆的概念所產生的錯誤,我加強了對比練習的訓練。例如,學生學習了整數大小的比較之后,知道30>8,407>47,懂得兩個自然數相比,數位越多,這個數就越大。學生頭腦中形成的這個概念對以后學習小數大小比較產生了一定的副作用。如在比較兩個小數大小時,有的學生認為0.407>0.47。為了防止錯誤的產生,我在教完小數大小的比較之后,設計了如下一組題,供學生進行練習。
通過以上題組的練習,學生明白了比較兩個小數大小與比較兩個整數大小的相同之處和不同之處,從而正確掌握了比較任意兩個數的大小的方法。
3.利用概念進行說理的練習
概念構成判斷,判斷又構成推理。判斷、推理的正確與否與學生是否掌握了概念的本質屬性有關。為了使學生真正掌握每個概念的本質屬性,我加強了讓學生運用概念進行說理的練習。如,在引入方程概念之后,讓學生判斷下面哪些是方程,哪些不是方程?并說明理由。
通過讓學生回答,特別是說明理由,培養了學生運用概念做簡單判斷的能力,而每作一次判斷,概念的本質屬性就在腦海里再現一次。這樣多次的說理練習,使學生牢牢掌握了概念的內涵,為其進行判斷和推理鋪好了基石。
三、不斷把新的概念納入原有的概念系統中
為了使所學過的概念不是單個的、孤立存在的,根據概念之間的聯系,每學完一個新概念,我都注意把新概念納入學生原有的概念系統中,這樣學生就能成塊地掌握所學過的概念,便于貯存、檢索和利用。例如,當學完了梯形的概念以后,我引導學生把所學過的四邊形進行歸類,系統整理,使學過的有關四邊形形成一個四邊形的概念系統,如下圖:
這樣,學生就容易記住以上圖形的特征,以及它們之間的聯系和區別,對于形成良好的空間觀念是十分有益的。
總之,概念教學是小學數學教學中的重要組成部分,正確理解和掌握數學概念是小學生學習數學知識的基石,同時又是培養小學生基本數學能力的前提。數學概念往往是以簡練、概括的語句表述的。如果不設法使這種較抽象的表述,與一定的生動、具體的“模型”建立聯系,小學生就難以真正理解它。因此上好概念課尤為重要。
參考文獻:
[1]劉品一.小學數學創新學習探究.山東教育出版社,2000.
[2]孫穎.新課程教學設計.首都師范大學出版社,2004,第1版.
[3]呂菊芬,等.小學數學實用課堂教學藝術.東北師范大學出版社,2007.